Driver silników prądu stałego dla Raspberry Pi Zero

Driver silników prądu stałego dla Raspberry Pi Zero
Pobierz PDF Download icon
Opisywane urządzenie opracowano z myślą o zastosowaniach w robotyce amatorskiej wraz z najnowszym Raspberry PI Zero. Dzięki ograniczonemu poborowi prądu i małym gabarytom jest to teraz zadanie zdecydowanie łatwiejsze, niż z poprzednikami Zero.

Rysunek 1. Tabela prawdy układu scalonego DRV8871

Płytka umożliwia sterowanie dwóch silników prądu stałego średniej mocy (szczytowo 3,6 A) zasilanych napięciem z zakresu 6,5...24 V, dwóch obciążeń 24 V/0,5 A, sterowanie/monitorowanie 8 wyprowadzeń GPIO w standardzie CMOS 3,3 V, np.: dla współpracy z sensorami, dołączenia magistrali I²C oraz komunikacji szeregowej. Układ drivera silnika jest oparty o specjalizowany driver DRV8871 firmy Texas Instruments.

Układ zawiera komponenty niezbędne dla sterowania silnikiem szczotkowym prądu stałego: dwa półmostki MOSFET z bezstratnym układem pomiaru prądu silnika (niewymagającym zewnętrznych elementów), logikę zabezpieczającą i pompę ładunku do sterowania tranzystorów mocy, wbudowany układ zabezpieczeń przeciążeniowych i termicznych oraz wejściową logikę sterującą.

Rysunek 2. Schemat ideowy drivera silników dla Raspberry PI Zero

Wbudowany czujnik prądu silnika nie wymaga zewnętrznego rezystora pomiarowego, ale w dalszym ciągu możliwa jest zmiana maksymalnego prądu uzwojeń poprzez dobór rezystora przyłączonego do wyprowadzenia IIlim, zgodnie z wzorem IIlim=64/Rilim [kV/kΩ].

W prototypie prąd ustalono na 2 A, co odpowiada Rilim o rezystancji około 33 kΩ. Minimalną rezystancję ustalono na 15 kΩ. Sterowanie kierunkiem obrotów odbywa się w konwencji L/R z wejść IN1/IN2, zgodnie z tabelą prawdy pokazaną na rysunku 1.

Schemat ideowy płytki sterownika zamieszczono na rysunku 2. Napięcie zasilania silników VM jest oddzielone od napięcia sterującego i ze względu na wymaganą moc musi pochodzić ze źródła zewnętrznego. Napięcie VM, doprowadzone poprzez złącze VM, zasila układy U1 i U2, kondensator CE1 filtruje zasilanie.

Należy pamiętać, że to wartość minimalna i w zewnętrznym zasilaczu powinien być "bank" kondensatorów o pojemności zdolnej do zapewnienia stabilnego zasilania układu. Rezystory RL1 i RL2 powinny być dobrane do posiadanego silnika wg wzoru na Rilim.

Oprócz sterowania silnikiem przydatna jest także możliwość sterowania obciążeniem. Podwójny tranzystor MOSFET (Q1) w konfiguracji OD może być wykorzystany do załączania oświetlaczy, elektromagnesów itp. Maksymalna obciążalność wyjść to 0,5 A/24 V. W przypadku obciążeń indukcyjnych należy wyjścia OUT odpowiednio zabezpieczyć transilem lub diodą dołączoną równolegle do obciążenia.

Do złącza IO w standardzie Arduino Bricks (IO/VCC/GND) doprowadzono 8 linii GPIO w standardzie CMOS 3,3 V, rezystory RP1 i R2 zabezpieczają wstępnie GPIO przed błędami w konfiguracji. Aby nie przeciążać wbudowanego stabilizatora 3,3 V, płytka ma własną przetwornicę obniżającą napięcie zasilające do 3,3 V o obciążalności do 250 mA. Układ zbudowano w oparciu o ADP2108 (U3). Dioda LD1 sygnalizuje zasilanie GPIO.

Rysunek 3. Schemat montażowy drivera silników dla Raspberry PI Zero

Dodatkowo, moduł umożliwia wyprowadzenie interfejsu I²C, portu szeregowego na złącza szpilkowe zgodnie z Arduino Bricks ułatwiając wygodne dołączenie współpracujących modułów komunikacyjnych np. opisywanych w EP I²C lub Xbee. Uwaga! Sygnały GPIO Raspberry PI Zero zgodne są ze standardem 3,3 V i dołączenie napięcia 5 V spowoduje uszkodzenie GPIO.

Driver zmontowano na niewielkiej, dwustronnej płytce drukowanej. Jej schemat montażowy pokazano na rysunku 3. Montaż jest typowy i nie wymaga opisywania. Należy tylko poprawnie przylutować pady termiczne układów U1 i U2. W wypadku "forsownej" pracy modułu warto układy driverów i tranzystor wyposażyć w niewielkie radiatory przyklejone klejem termoprzewodzącym.

Adam Tatuś, EP

Artykuł ukazał się w
Elektronika Praktyczna
czerwiec 2016
DO POBRANIA
Pobierz PDF Download icon
Materiały dodatkowe
Zobacz też
Elektronika Praktyczna Plus lipiec - grudzień 2012

Elektronika Praktyczna Plus

Monograficzne wydania specjalne

Elektronik maj 2020

Elektronik

Magazyn elektroniki profesjonalnej

Raspberry Pi 2015

Raspberry Pi

Wykorzystaj wszystkie możliwości wyjątkowego minikomputera

Świat Radio czerwiec 2020

Świat Radio

Magazyn użytkowników eteru

APA - Automatyka Podzespoły Aplikacje maj 2020

APA - Automatyka Podzespoły Aplikacje

Technika i rynek systemów automatyki

Elektronika Praktyczna maj 2020

Elektronika Praktyczna

Międzynarodowy magazyn elektroników konstruktorów

Praktyczny Kurs Elektroniki 2018

Praktyczny Kurs Elektroniki

24 pasjonujące projekty elektroniczne

Elektronika dla Wszystkich maj 2020

Elektronika dla Wszystkich

Interesująca elektronika dla pasjonatów