Uniwersalny układ czasowy 230 V

Uniwersalny układ czasowy 230 V
Pobierz PDF Download icon

Niezwykle prosty, ale funkcjonalny układ czasowy, który pozwala sterować dowolnym urządzeniem zasilanym z sieci energetycznej 230 V AC w sposób cykliczny, przerywany. Bazuje na nieśmiertelnej i legendarnej kostce NE555 w typowym układzie astabilnym – generator wytwarza impulsy o stałej czasowej określonej przez kombinacje kondensatora i rezystorów. Jako element sterujący zastosowano przekaźnik.

Podstawowe parametry:
  • płynna regulacja czasu włączenia i wyłączenia,
  • zakres czasu włączenia: 0,5…15 s,
  • zakres czasu wyłączenia: 0,5…60 s,
  • sygnalizacja pracy diodą LED,
  • element wykonawczy: przekaźnik,
  • max. obciążenie wyjścia: 8 A, 230 V AC,
  • zasilanie 230 V AC

Układ służy do cyklicznego włączania i wyłączania odbiornika dołączonego do wyjścia. Dzięki takiemu działaniu umożliwia np. ograniczenie poboru energii (poprzez zredukowanie wydajności) lub np. cykliczne dozowanie czegoś. Na rysunku 1 pokazano schemat elektryczny. Układ zasilany jest bezpośrednio z sieci 230 V AC za pośrednictwem zasilacza beztransformatorowego. Kondensator C1 ogranicza prąd, który urządzenie może pobrać z sieci energetycznej, a rezystor R1 zabezpiecza mostek B1 przed uszkodzeniem na skutek przeciążenia, które wystąpiłoby w chwili włączenia do sieci. Rezystor R2 służy do rozładowania kondensatora C1 po odłączeniu zasilacza. Mostek prostowniczy został dołączony do ogranicznika napięcia w postaci diody Zenera 12 V, natomiast kondensatory C2 i C3 pełnią funkcję filtra zasilania. Dioda LED1 informuje o obecności napięcia zasilającego.

Rysunek 1. Schemat elektryczny układu

Głównym elementem układu jest wciąż nieśmiertelny timer NE555, pracujący w jednym z najczęściej stosowanych rozwiązań, czyli w układzie generatora astabilnego generującego impulsy o czasie trwania zależnym od pojemności kondensatora C6, rezystancji rezystora R7 oraz ustawienia suwaka potencjometru PR2.

Obwód złożony z kondensatora C5, rezystora R5 oraz potencjometru PR1 określa czas przerwy pomiędzy kolejnymi impulsami wyjściowymi. Dioda LED2 pełni funkcję sygnalizatora zadziałania przekaźnika PK1. Dwa potencjometry PR1 i PR2 pozwalają niezależnie regulować czas włączenia (w przedziale ok. 0,5...15 sekund) i wyłączenia (w przedziale ok. 0,5...60 sekund).

Rysunek 2. Schemat płytki PCB wraz z rozmieszczeniem elementów

Rozmieszczenie elementów na płytce drukowanej pokazuje rysunek 2. Montaż układu jest typowy i nie powinien przysporzyć problemów. Zasilacz beztransformatorowy nie zapewnia separacji od sieci energetycznej, dlatego wszelkie prace nad układem należy wykonywać przy odłączonym zasilaniu. Jako układ wykonawczy zastosowano przekaźnik o obciążalności styków do 8 A/230 V AC. Przy sterowaniu obciążeniem o znacznej mocy należy zwrócić uwagę nie tylko na obciążenie styków przekaźnika, ale także ścieżek płytki drukowanej. Aby poprawić ich obciążalność, można pobielić ścieżki lub ułożyć na nich i przylutować drut miedziany. Układ znajdzie wiele zastosowań, m.in. do uzyskania efektów świetlnych, w fotografii czy też jako prosta automatyka do różnych urządzeń.

EB

Wykaz elementów:
Rezystory:
  • R1: 150 Ω/3 W
  • R2: 1 MΩ
  • R3...R7: 1 kΩ
Półprzewodniki:
  • IC1: NE555
  • T1: BC547
  • D1: dioda Zenera 0,4 W, 12 V
  • D2, D3: 1N4148
  • LED1, LED2: dioda LED 3 mm
Kondensatory:
  • C1: 470 nF/250 V
  • C2, C5, C6: 220 μF
  • C3, C4: 100 nF
Inne:
  • PK1: przekaźnik
Artykuł ukazał się w
Elektronika Praktyczna
listopad 2019
DO POBRANIA
Pobierz PDF Download icon
Zobacz też
Elektronika Praktyczna Plus lipiec - grudzień 2012

Elektronika Praktyczna Plus

Monograficzne wydania specjalne

Elektronik marzec 2020

Elektronik

Magazyn elektroniki profesjonalnej

Raspberry Pi 2015

Raspberry Pi

Wykorzystaj wszystkie możliwości wyjątkowego minikomputera

Świat Radio kwiecień 2020

Świat Radio

Magazyn użytkowników eteru

APA - Automatyka Podzespoły Aplikacje marzec 2020

APA - Automatyka Podzespoły Aplikacje

Technika i rynek systemów automatyki

Elektronika Praktyczna marzec 2020

Elektronika Praktyczna

Międzynarodowy magazyn elektroników konstruktorów

Praktyczny Kurs Elektroniki 2018

Praktyczny Kurs Elektroniki

24 pasjonujące projekty elektroniczne

Elektronika dla Wszystkich kwiecień 2020

Elektronika dla Wszystkich

Interesująca elektronika dla pasjonatów