Przetworniki CDC, cz.1. Modulacja Sigma - Delta w przetwornikach pojemność - cyfra

Przetworniki CDC, cz.1. Modulacja Sigma - Delta w przetwornikach pojemność - cyfra
Pobierz PDF Download icon
Prezentujemy nową generację przetworników analogowo-cyfrowych, przetwarzających pojemność na cyfrę. Zaczyna się je coraz częściej stosować jako elementy klawiatur pojemnościowych i sensorów służących do pomiaru poziomu, ciśnienia, położenia obiektu itp. Rozpoczynamy od części teoretycznej, prezentującej podstawy wiedzy na temat przetwarzania cyfrowego, potem, aby przedstawić praktyczne rozwiązania wykorzystujące układy scalone AD7745/46, AD7150/52 firmy Analog Devices.
62 ELEKTRONIKA PRAKTYCZNA 3/2009 NOTATNIK KONSTRUKTORA Podstawowe wiadomości ? nadpróbkowanie, cyfrowa ?ltracja, kształtowanie szumu oraz decymacja Bez większych trudności powinniśmy zrozumieć zasadę pracy prze- twornika S?D, jeśli tylko ominiemy pewne szczegóły matematyczne. W tym artykule spróbujemy podjąć się tego zadania w przystępny sposób. Przetwarzanie S?D opiera się o analogowe elementy elektroniczne (komparator, źródło referencyjne, przełącznik, integrator oraz układ sumu- jący) oraz dość złożony cyfrowy układ obliczeniowy. Jednym z jego elemen- tów jest ?ltr cyfrowy. Przeważnie jest to ?ltr dolnopasmowy, lecz nie jest to regułą. Aby móc korzystać we własnych aplikacjach z przetworników CDC nie jest konieczna dokładna znajomość teorii ?ltrów i wyższej matematyki a jedynie garść informacji teoretycznych. Do zrozumienia przetwarzania S?D musimy poznać następujące pojęcia: nadpróbkowanie, kształtowanie szumu kwantyzacji, cyfrowa ?ltracja oraz decymacja. Nadpróbkowanie w dziedzinie częstotliwości Konwersja sygnału DC posiada błąd kwantyzacji mniejszy lub równy 50% LSB. Próbkując dane zawsze borykamy się z szumem kwantyzacji, jest to tak zwana konwersja stratna. Idealne próbkowanie N-bitowe posiada wartość skuteczną (RMS) szumu kwantyzacji równą , zawierając się jednocześnie w paśmie Nyquist-a od 0 do fS /2 (gdzie q jest stanem LSB a fS jest częstotli- wością próbkowania (rys. 1a). Zatem, stosunek sygnału do szumu (SNR) wej- ściowego sygnału sinusoidalnego będzie równy 6,02×N+1,76 dB. Jeśli prze- Przetworniki CDC (1) Modulacja Sigma ? Delta w przetwornikach pojemność ? cyfra Prezentujemy nową generację przetworników analogowo-cyfrowych, przetwarzających pojemność na cyfrę. Zaczyna się je coraz częściej stosować jako elementy klawiatur pojemnościowych i sensorów służących do pomiaru poziomu, ciśnienia, położenia obiektu itp. Rozpoczynamy od części teoretycznej, prezentującej podstawy wiedzy na temat przetwarzania cyfrowego, potem, aby przedstawić praktyczne rozwiązania wykorzystujące układy scalone AD7745/46, AD7150/52 ?rmy Analog Devices. twarzanie ADC jest poniżej wytycznych oraz szum jest większy niż teoretyczne minimalny szum kwantyzacji, wówczas skuteczna rozdzielczość przetwornika będzie mniejsza niż N bitów. Wyżej wspomniana rozdzielczość (często używa- na nazwa to efektywna rozdzielczość bitowa (ENOB) będzie wyrażona: Jeśli weźmiemy większą częstotliwość próbkowania Kfs (patrz rys. 1b), RMS szumu kwantyzacji pozostaje , lecz szum jest rozproszony na całe pasmo od DC do Kfs /2. Stosując na wyjściu ?ltr cyfrowy dolnoprzepustowy możemy usunąć dużą część szumu kwantyzacji bez wywierania wpływu na pożądany sy- gnał, czyli ENOB ulega poprawie. Osiągamy wysoką rozdzielczość prze- twarzania A/D (24-bitowe słowo kodowe) przy niskiej rozdzielczości prze- twornika ADC (1-bitowy przetwornik S?D). Współczynnik K nazywany jest współczynnikiem nadpróbkowania. W tym momencie należy dodać, iż nad- próbkowanie przynosi dodatkową korzyść przy wymogu stosowania ana- logowego ?ltru antyaliasingowego. Jest to znaczna korzyść przetwarzania S?D, zwłaszcza dla użytkowników aplikacji audio, gdzie ma znaczenie ostre odcięcie w liniowej fazie ?ltra. Decymacja Pasmo jest zredukowane dzięki zastosowaniu ?ltra cyfrowego na wyjściu. Częstotliwość próbkowania na wyjściu może być mniejsza od oryginalnej czę- stotliwości próbkowania (Kfs ) i wciąż spełniać kryterium Nyquist-a. Przepusz- czamy każdą M-tą próbkę i odrzucamy resztę. Taki proces nosi nazwę decy- macji o współczynniku M. Wbrew oryginalnego pochodzenia terminu współ- czynnik M może przybierać wartość każdej liczby całkowitej, pod warunkiem, że częstotliwość próbkowania na wyjściu będzie dwa razy większa niż pasmo sygnału. Decymacja nie wprowadza żadnych strat w informacji (rys. 1b). Proste użycie nadpróbkowania powiększa rozdzielczość. Aby uzyskać wzrost rozdzielczości o N bitów, nalezy użyć współczynnika nadpróbkowa- nia równego 22N . Przetwornik S?D nie potrzebuje bardzo dużych współ- czynników nadpróbkowania, gdyż nie tylko ogranicza go pasmo przepu- stowe, ale również kształt szumu kwantyzacji, który zmniejsza się poza pasmem przepustowym jak pokazano na rys. 1c. Kształtowanie szumu kwantyzacji Usunięty szum kwantyzacji pojawia się z większymi amplitudami jako szum pozapasmowy systemu. Szumy te są usuwane dzięki ?ltrowi cyfrowe- mu. Rezultatem jest zwiększony zakres dynamiki systemu Rys. 1. Nadpróbkowanie, cyfrowa ?ltracja, decymacja, oraz kształtowanie szumu 12 q dB dBSNR ENOB 02,6 76,1? = 12 q )1(01 kxCC ??= )1(02 kxCC ??= (1) kx CC ? ?= 1 1 01 kx CC ? ?= 1 1 01 (2) )( 1 321 DACDACDACrefref exc CCCCU CU kDIG +++? ? ?= 12 q dB dBSNR ENOB 02,6 76,1? = 12 q )1(01 kxCC ??= )1(02 kxCC ??= (1) kx CC ? ?= 1 1 01 kx CC ? ?= 1 1 01 (2) )( 1 321 DACDACDACrefref exc CCCCU CU kDIG +++? ? ?= 12 q dB dBSNR ENOB 02,6 76,1? = 12 q )1(01 kxCC ??= )1(02 kxCC ??= (1) kx CC ? ?= 1 1 01 kx CC ? ?= 1 1 01 (2) )( 1 321 DACDACDACrefref exc CCCCU CU kDIG +++? ? ?= 63ELEKTRONIKA PRAKTYCZNA 3/2009 Przetworniki CDC Na rys. 2 pokazano częstotliwościową odpowiedź wbudowanego ?ltru cyfrowego (AD7745/46 ? CDC). Filtr ten przepuszcza interesujące pasmo oraz dodatkowo usuwa przydźwięk w sygnale pochodzący od częstotliwo- ści prądu elektrycznego w sieci energetycznej (np. w Polsce: 50 Hz, Stany Zjednoczone: 60 Hz), i ich harmonicznych. Można to zaobserwować na rys. 2. Zasada działania modulatora delta-sigma Podstawowymi elementami modulatora D ? S są sumator oraz układ całkujący. Dodatkowo stosuje się układ najprostszego przetwornika analo- gowo ? cyfrowego, który jest generatorem cyfrowego słowa wyjściowego przetwornika DIG. Ściślej rzecz biorąc: układ prostego układu komparatora, ponieważ cyfrowe słowo wyjściowe jest 1?bitowe. Informacja o mierzonym napięciu wejściowym nie jest jednak tracona na zwykłym dyskryminatorze o dwóch stanach na wyjściu. Jest ona zachowana w ilości wyjściowych, 1- -bitowych danych cyfrowych oraz w częstotliwości, z jaką są produkowane (silne nadpróbkowanie sygnału). Dołączając do wyjścia komparatora ?ltr cyfrowy oraz decymator uzyskuje się przetwornik analogowo ? cyfrowy z szumem kwantyzacji na poziomie nawet 24 bitów, czyli 224 poziomów kwantyzacji. Przetwornik taki nazywa się przetwornikiem 24-bitowym mimo, iż w jego strukturze użyto prostego jednobitowego komparatora, a jakość jego przetwarzania wynika z zastosowania modulatora S-D oraz nadpróbkowania. Na rys. 3 zamieszczono przebiegi sygnałów na wyjściu integratora, oraz komparatora, gdy Uwej =0 V lub Uwej =+Vref/2. Można stwierdzić, iż Rys. 2. Częstotliwościowa odpowiedź wbudowanego ?ltra cyfrowego (AD7745/46) Modulator 1-go rzędu Zasada przetwarzania wejściowego napięcia (Uwej ) na wyjściowe słowo cyfro- we (DIG). Założenia: Uwej =1,2 V, Uref+ =5 V, Uref- =?5 V oraz po włączeniu układu zasila- nia napięcia DIG=Usum = Uint =0 V. Krok (1) Napięcie wejściowe (Uwej =1,2 V) jest sumowane z napięciem wyjściowym (Uwyj =0 V), czego wynikiem jest napięcie sumacyjne (Usum =1,2 V) podane na wejście układu całkującego. Po całkowaniu napięcie wyjściowe układu całkującego (Uint =1,2 V) podawane jest na komparator; ponieważ napięcie wejściowe jest większe od potencjału masy (Uint >0) komparator wystawia na wyjściu dodatnie napięcie referencyjne (Uwyj =5 V) odpowiada to stanowi ?1? na wyjściu. Krok (2) Napięcie wejściowe (Uwej =1,2 V) sumowane jest z napięciem wyjściowym komparatora (Uwyj =5 V), czego wynikiem jest napięcie sumacyjne (Usum =1,2 V?5 V=?3,8 V) podane na wejście układu całkującego. Po cał- kowaniu wyjściowe napięcie (Uint =1,2 V?3,8 V=?2,6 V) podawane jest na komparator, ponieważ wejściowe napięcie jest mniejsze od potencjału masy (Uint <0) komparator wystawia na wyjściu potencjał masy (Uwyj =0 V) odpo- wiada to stanowi ?0? na wyjściu. Krok (3) Napięcie wejściowe (Uwej =1,2 V) sumowane jest z napięciem wyjściowym (Uwyj =0 V), czego wynikiem jest napięcie sumacyjne (Usum =1,2 V) podane na wejście układu całkującego. Po całkowaniu wyjściowe napięcie (Uint =-2,6 V+1,2 V=-1,4 V) podawane jest na komparator; ponieważ wej- ściowe napięcie jest mniejsze od potencjału masy (Uint <0) komparator wy- stawia na wyjściu potencjał masy (Uwyj =0 V) odpowiada to stanowi ?0? na wyjściu. Powtarzając wyżej przedstawiony algorytm uzyskamy strumień bitowy na wyjściu komparatora DIG = ?01000100010001...?, uśredniając w ?ltrze cy- frowym otrzymamy wartość 24% z napięcia zasilania komparatora Uref+ =5 V, czyli dokładnie 1,2 V. Rys. 3. Przebiegi sygnałów modulatora S ? D (wyjście integratora oraz komparatora) Rys. 4. Sygnał wejściowy oraz zmodulowany (modulator 1-go rzędu S ? D) Rys. 5. Szum kwantyzacji modulatora sigma ? delta w dziedzinie częstotliwości 64 ELEKTRONIKA PRAKTYCZNA 3/2009 NOTATNIK KONSTRUKTORA 12 q dB dBSNR ENOB 02,6 76,1? = 12 q )1(01 kxCC ??= )1(02 kxCC ??= (1) kx CC ? ?= 1 1 01 kx CC ? ?= 1 1 01 (2) )( 1 321 DACDACDACrefref exc CCCCU CU kDIG +++? ? ?= Rys. 6. Zależność SNR (stosunek sygnał ? szum) od współczynni- ka nadpróbkowania dla 1-szego, 2-go, oraz 3-go rzędu modula- tora S?D Rys. 7. Modulator S ? D 2-go rzędu 12 q dB dBSNR ENOB 02,6 76,1? = 12 q )1(01 kxCC ??= )1(02 kxCC ??= (1) kx CC ? ?= 1 1 01 kx CC ? ?= 1 1 01 (2) )( 1 321 DACDACDACrefref exc CCCCU CU kDIG +++? ? ?= Rys. 8. Schemat zastępczy prostego czujnika opisanego dwoma pojemnościami układ pamięta (kondensator w układzie całkującym) błąd popełniony przy kwanty- zacji napięcia wejściowego układu dyskry- minatora w poprzednim kroku i cały czas uwzględnia go w kolejnych konwersjach, wystawiając wyjściowe słowo cyfrowe proporcjonalne do napięcia wejściowego. O dokładności przetwarzania decyduje się dobierając długość cyfrowego słowa wyj- ściowego oraz częstotliwość przetwarzania modulatora. Dodatkową zaletą płynącą z użycia modulatora jest możliwość wpływania na kształt w dziedzinie częstotliwościowej. Na rys. 5 przedstawiono przebieg szumu kwantyzacji modulatora S?D w dziedzinie częstotliwości. Krzywe charakteryzują rząd modulatora, czyli ilość układów całkujących w torze modulacji. Pole szumu kwantyzacji pozostaje bez zmian, natomiast krzywa zostaje ?przesunięta? w kierunku często- tliwości powyżej Fmax , czyli poza pasmo sy- gnału użytkowego. Efekt można polepszyć powiększając rząd modulatora ? dodając ilość układów całkujących. Na rys. 6 przedstawiono zależność pomiędzy rzędem modulatora S?D a war- tością współczynnika nadpróbkowania K dla poszczególnych wartości SNR. Dla przykładu, dla współczynnika nadpróbkowania K=64, idealny modula- tor 2-go rzędu jest zdolny uzyskać SNR na poziomie 80 dB. To oznacza 13- -to bitową efektywna rozdzielczość (ENOB). Uzyskanie wyższej rozdzielczo- ści z układu 1-bitowego może nastąpić dzięki zwiększaniu współczynnika nadpróbkowania i/lub używając modulatora S?D wyższego rzędu. Modulator 2-go rzędu przedstawiono na schemacie blokowym na rys. 7. Modulatory 3-go i wyższego rzędu uważane były za potencjalnie niestabilne, lecz ostatnio prowadzone analizy z użyciem komparatora skoń- czonego wzmocnienia pokazują, że nie musi to być prawdą, gdyż nawet jeśli zaczyna pojawiać się niestabilność, to DSP w ?ltrze cyfrowym oraz decymatorze może rozpoznać ją w stanie początkowym i odpowiednio zareagować. Pomiary pojemności. Czujniki Zazwyczaj przy pomiarach różnych wielkości ?zycznych panuje zasada, iż badana wielkość przetwarzana jest na wielkość elektryczną tzn. odpo- wiednie napięcie lub prąd wyjściowy czujnika. Jednym z rozwiązań może być para kondensatorów. Powszechnie stosuje się różnicowy układ kon- densatorów (rys. 8). W tym układzie badana wielkość ?zyczna wpływa na oba kondensatory z przeciwnym charakterem zmian, tzn. gdy pojemność C1 wzrasta, to pojemność C2 maleje. Badane wielkości, zgodnie z zależnością (1), najczęściej wpływają na zmianę przenikalności elektrycznej ośrodka pomiędzy elektrodami (zależ- ność proporcjonalna): lub odległości pomiędzy elektrodami (zależność odwrotnie proporcjonal- na): Rys. 9. Architektura przetwornika ADC typu S?D Rys. 10. Architektura przetwornika CDC typu S?D gdzie: C0 ? pojemność początkowa, k ? współczynnik proporcjonalności, x ? zmiana wielkości 65ELEKTRONIKA PRAKTYCZNA 3/2009 Przetworniki CDC Rys. 15. Pomiar wilgotności z użyciem przetwornika pojemność ? cyfra Rys. 12. Przykładowe zastosowanie czujników ciśnienia w samo- chodzie Rys. 13. Pomiar ciśnienia z wykorzystaniem przetwornika CDC Rys. 14. Pomiar poziomu np. wody, oleju z użyciem przetwornika pojemność cyfra Rys. 11. Przetwornik CDC z modulatorem S?D drugiego rzędu nienie w pomiarach jedynie jej zmian. Wyjściowe słowo cyfrowe zależy tym razem od relacji kondensatorów C1 i (Cref +CDAC1 +CDAC2 +CDAC3 ) i opisuje je zależność: Zastosowanie przetworników pojemność ? cyfra Przetworniki CDC mogą służyć do pomiaru: ciśnienia, przemieszcze- nia/zbliżenia, przyspieszenia, wilgotności, pH, poziomu cieczy, pomiarów biomedycznych itp. Potencjalnie np. samochód może zawierać powyżej 22 z wyżej wymienionych. Na rys. 12 przedstawiono niektóre z nich. Na ry- sunkach odpowiednio przedstawiono: 13 ? aplikacja czujnika ciśnienia, 14 ? aplikacja czujnika poziomu, 15 ? aplikacja czujnika wilgotności z użyciem przetwornika pojemność ? cyfra wykorzystującego modulację S?D. Praktycznie w każdym zastosowaniu jest możliwość kompensacji tem- peraturowej, tak jak przy użyciu przetwornika z 2-ma kanałami kompensa- cji wejścia. Dzięki temu można wyeliminować wpływ zmian otoczenia na mierzony układ. Możliwości stosowania takich przetworników są bardzo szerokie, szczególnie w przemyśle motoryzacyjnym i medycynie, które to są główny- mi odbiorcami wyżej wymienionych układów. Piotr Pietrzyk p.pietrzyk@ieee.org Przetwornik CDC (Capacitance-to-Digital Converter) Pojemności Cin oraz Cref ładowane są w fazie f1 i całkowane w fazie f2. Sprzężenie zwrotne utrzymuje ładunek referencyjny Cref równy ładun- kowi wejściowemu Cin. Ładunek referencyjny jest ładowany proporcjonal- nie do cyfrowego wyjścia komparatora, skutkiem tego cyfrowe wyjście jest proporcjonalne do ładunku wejściowego. Ewolucją zaprezentowanego układu jest przetwornik pojemnościowo ? cyfrowy (CDC). W architekturze przetwornika pojemność ? cyfra (rys. 11), wewnętrz- na, znana pojemność Cin zastąpiona jest zewnętrzną, nieznaną pojemno- ścią Cin, natomiast zewnętrzne, nieznane napięcie Vin, zastąpione jest we- wnętrznym, znanym pobudzeniem. Idea przetwornika D ? S jest zachowa- na (rys. 12). Występuje tu drugi układ całkujący, który mody?kuje, kształt szumu kwantyzacji. Dodatkowo zastosowano kondensatory CDAC1 , CDAC2 , CDAC3 , których sumacyjna pojemność jest odejmowana od pojemności C1. Umożliwia to wyeliminowanie składowej stałej pojemności C1 i uwzględ- )1(01 kxCC ??= )1(02 kxCC ??= (1) kx CC ? ?= 1 1 01 kx CC ? ?= 1 1 01 (2) )( 1 321 DACDACDACrefref exc CCCCU CU kDIG +++? ? ?=
Artykuł ukazał się w
Marzec 2009
DO POBRANIA
Pobierz PDF Download icon
Elektronika Praktyczna Plus lipiec - grudzień 2012

Elektronika Praktyczna Plus

Monograficzne wydania specjalne

Elektronik czerwiec 2020

Elektronik

Magazyn elektroniki profesjonalnej

Raspberry Pi 2015

Raspberry Pi

Wykorzystaj wszystkie możliwości wyjątkowego minikomputera

Świat Radio lipiec 2020

Świat Radio

Magazyn użytkowników eteru

APA - Automatyka Podzespoły Aplikacje czerwiec 2020

APA - Automatyka Podzespoły Aplikacje

Technika i rynek systemów automatyki

Elektronika Praktyczna czerwiec 2020

Elektronika Praktyczna

Międzynarodowy magazyn elektroników konstruktorów

Praktyczny Kurs Elektroniki 2018

Praktyczny Kurs Elektroniki

24 pasjonujące projekty elektroniczne

Elektronika dla Wszystkich czerwiec 2020

Elektronika dla Wszystkich

Interesująca elektronika dla pasjonatów