Regulator jasności diod power LED

Regulator jasności diod power LED
Pobierz PDF Download icon

W ostatnich latach w branży oświetleniowej zachodzą istotne zmiany. Konsekwentnie wypierane żarowe i fluorescencyjne źródła światła zastępowane są przez wydajniejsze i bardziej energooszczędne źródła LED-owe. Niestety tańsze, a zarazem najpopularniejsze oświetlenie LED charakteryzuje niski współczynnik oddawania barw CRI oraz uciążliwy stopień migotania światła (flickering), które męczy wzrok.

Podstawowe parametry:
  • regulacja jasności z pamięcią nastaw,
  • napięcie zasilania od kilku do ok. 40 V,
  • może współpracować z typowymi taśmami LED i popularnymi LED-ami mocy w obudowie COB.

Doświetlenie fotografowanych obiektów lub oświetlenie stołu roboczego to sytuacje, w których jakość światła ma duże znaczenie. Niestety, właściwego oświetlenia nie zapewni pierwsza lepsza „żarówka” LED. Poszukiwania LED-owego źródła światła, które mogłoby konkurować z halogenowym, zaprowadziły do portalu swiatelka.pl, skąd pochodzą porównawcze fotografie z grejpfrutami (fotografie 1a i b).

Fotografia 1. Porównanie jakości oświetlenia: a) oświetlenie diodą o CRI = 80, b) oświetlenie diodą o CRI = 97

Dioda LED o współczynniku oddawania barw CRI>97 do prawidłowej pracy wymaga zasilania układem z regulacją prądu, a przydatną funkcjonalnością byłaby regulacja jasności z pamięcią nastaw. Zadania te realizuje opisany moduł, który umożliwia 32-poziomową regulację jasności oświetlenia – od zupełnego wyłączenia, po pracę z pełną mocą. Urządzenie obsługuje źródła światła, zasilane napięciem od kilku do ok. 40 V. Zatem może współpracować z typowymi taśmami LED i popularnymi LED-ami mocy w obudowie COB.

Budowa i działanie

Schemat regulatora został pokazany na rysunku 1. Układ U2 typu LMV431 na bieżąco kontroluje napięcie na swoim wejściu i tak ustawia potencjał bramki T1, aby to napięcie wynosiło 1,25 V. Cała idea regulacji polega na tym, że napięcie wejściowe LMV431 jest składową dwóch wartości: napięcia z R3, proporcjonalnego do prądu diody, oraz napięcia z drabinki rezystorowej, zawartej w potencjometrze cyfrowym U3. W skrajnym, dolnym ustawieniu potencjometru na wejście komparatora LMV431 trafia wyłącznie napięcie z rezystora R3, więc prąd diody LED wyniesie 1,25 V/R3. W przeciwnym, górnym położeniu do wejścia komparatora trafia napięcie z dzielnika R2 i sumy rezystancji U3 – 10 k, które przy wartościach podanych na schemacie wyniesie 1,25 V. Zatem komparator blokuje się bez dodatkowego udziału napięcia z R3. Wszystkie pośrednie nastawy potencjometru powodują przepływ prądu przez R3 o takiej wartości, aby suma spadku napięcia na R3 oraz napięcia z dzielnika R2 i potencjometru XR9511 wynosiła 1,25 V.

Rysunek 1. Schemat elektryczny układu

Nastawę układu U3 – potencjometru cyfrowego, zmienia się poprzez naciskanie klawiszy S1 i S2. Natomiast podłączenie do masy wyprowadzenia 7 (/ASE), aktywuje automatyczne zapisywanie ustawienia suwaka do wewnętrznej pamięci oraz przywrócenie tego ustawienia po ponownym włączeniu zasilania. Układ U3 wymaga zasilania napięciem 5 V, dlatego w regulatorze zastosowano stabilizator 78L05. Stabilizowane napięcie 5 V zasila także dzielnik R2/potencjometr XR9511 i wskazane jest, aby wynosiło dokładnie 5,0 V.

Zaznaczony gwiazdką na schemacie rezystor mocy R3 umożliwia ustawienie maksymalnego prądu diody. Obowiązuje wzór Imax=1,25 V/R3.

Wartość 1 Ω pokazana na schemacie może być zbyt mała dla wielu diod COB. Koniecznie należy sprawdzić prąd maksymalny w dokumentacji diody, a R3 dobrać według podanego wzoru. Sytuacja wygląda inaczej z 12-woltowymi taśmami LED, ponieważ nie grozi im uszkodzenie przy zasilaniu z 12 V, a nadmierne zwiększanie R3 ograniczy maksymalną jasność.

Na schemacie widzimy jeszcze dwa elementy zaznaczone gwiazdką – diodę D1 oraz rezystor R1. Diodę D1 należy zastosować przy zasilaniu sterownika z napięcia wyższego niż 12 V. Podana wartość 30 V dotyczy pracy sterownika z popularnymi diodami COB, zawierającymi w swojej strukturze łańcuchy 12 szeregowo połączonych diod. Taka „duża dioda” wymaga zasilania co najmniej 36 V, a cały sterownik trzeba zasilić jeszcze wyższym napięciem. Dobrze nadają się do tego zasilacze 48 V PoE. Wtedy dioda D1 obniża napięcie na wejściu stabilizatora 78L05 oraz bramce T1 do bezpiecznej wartości.

Natomiast rezystor R1 ogranicza prąd komparatora LMV431 i jednocześnie umożliwia jego pracę. Przyjmując zalecany prąd Iz=1 mA, przy zasilaniu regulatora z 12 V otrzymujemy wartość R1 równą 10 k. Należy jednak rozważyć dwa przypadki: przy zasilaniu regulatora z 5 V (z pominięciem U1) wartość 10 k będzie zbyt duża. Spoczynkowy prąd ok. 100 μA pobierany przez LMV431 wywoła na R1 spadek około 1 V. Jeśli wtedy na R3 odłoży się 1,25 V, to na wysterowanie bramki T1 pozostanie zaledwie 3,75 V. Dla sporej grupy MOSFET-ów mocy będzie to zbyt niskie napięcie do pełnego otwarcia się. Drugi przypadek to zasilanie sterownika z 18 V i więcej. Wtedy R1 należy odpowiednio zwiększyć.

Montaż i uruchomienie

Montaż urządzenia jest bardzo prosty, schemat płytki wraz z rozmieszczeniem elementów pokazano na rysunku 2, ewentualne wątpliwości wyjaśnia fotografia tytułowa. Należy rozpocząć od elementów montowanych powierzchniowo. Wartość R3 dobieramy ze wzoru R=1,25 V/Imax. Przy tym należy pamiętać, że praca z maksymalnym prądem wymaga właściwego chłodzenia diody.

Rysunek 2. Schemat płytki PCB wraz z rozmieszczeniem elementów

Chwila pracy ze zbyt małym radiatorem może skończyć się jak na fotografii 2.

Fotografia 2. Niebezpieczny wzrost temperatury diody przy niewystarczającym odprowadzaniu ciepła

Dla przykładu, 25-watowa dioda CLU036-1208C1 (8 sekcji po 12 diod) wymagała potężnego radiatora, stosowanego kiedyś dla procesorów Duron. Pomimo to, temperatura świecących struktur podnosi się do 150°C (fotografia 3).

Fotografia 3. Temperatura diody przy właściwym odprowadzaniu ciepła

Sterownik pracuje w dosyć szerokim zakresie napięć. Przy połączeniu z klasycznymi taśmami LED 12 V diodę D1 zastępujemy zworką. Dla diod COB 36 V (np. z serii CLU036) wartość D1 powinna wynosić 30 V. Szukając zasilacza PoE (48 V), warto rozejrzeć się za wersją z regulowanym napięciem.

Jak pokazały pomiary, po zmniejszeniu napięcia na wyjściu zasilacza do ok. 40 V znacznie zmniejsza się nagrzewanie T1. Dzieje się tak dlatego, że na mosfecie odkłada się zaledwie około 2 V i przy mniejszych prądach T1 może pracować bez radiatora.

Uwaga końcowa

Na koniec pewna uwaga z pogranicza elektroniki i optyki. Prawie liniowa zależność strumienia świetlnego od przepływającego prądu pozwala na odmierzenie 32 równych poziomów światła. Wydawać by się mogło, że ta liniowa zależność będzie zaletą np. do ustawiania czasu ekspozycji w aparacie. Niestety, charakterystyka ludzkiego oka sprawia, że kolejne nastawy odbierane są jako coraz mniejsze przyrosty jasności. Jeżeli będzie to uciążliwe, rozwiązaniem może być wymiana potencjometru na wersję z charakterystyką logarytmiczną, stosowaną przy regulacji głośności.

Michał Stach
michal.stach@elportal.pl

Wykaz elementów:
Rezystory:
  • R1: 10 kΩ (wg opisu w tekście)
  • R2: 30 kΩ
  • R3: 1 Ω/5 W (wg opisu w tekście)
Kondensatory:
  • C1: 100 μF/25 V
  • C2: 100 nF
  • C3: 10 μF/10 V
Półprzewodniki:
  • D1: dioda Zenera 30 V (wg opisu w tekście)
  • T1: MOSFET-N STP60NF06
  • U1: LM78L05
  • U2: LMV431
  • U3: X9511-10 k
Inne:
  • S1, S2: mikroswitch
  • CON1, CON2: złącze śrubowe, raster 5 mm
Artykuł ukazał się w
Elektronika Praktyczna
sierpień 2020
DO POBRANIA
Pobierz PDF Download icon

Elektronika Praktyczna Plus lipiec - grudzień 2012

Elektronika Praktyczna Plus

Monograficzne wydania specjalne

Elektronik kwiecień 2021

Elektronik

Magazyn elektroniki profesjonalnej

Raspberry Pi 2015

Raspberry Pi

Wykorzystaj wszystkie możliwości wyjątkowego minikomputera

Świat Radio kwiecień - maj 2021

Świat Radio

Magazyn krótkofalowców i amatorów CB

Automatyka Podzespoły Aplikacje kwiecień 2021

Automatyka Podzespoły Aplikacje

Technika i rynek systemów automatyki

Elektronika Praktyczna kwiecień 2021

Elektronika Praktyczna

Międzynarodowy magazyn elektroników konstruktorów

Praktyczny Kurs Elektroniki 2018

Praktyczny Kurs Elektroniki

24 pasjonujące projekty elektroniczne

Elektronika dla Wszystkich kwiecień 2021

Elektronika dla Wszystkich

Interesująca elektronika dla pasjonatów