Przedstawiane urządzenie jest regulatorem mocy i kierunku obrotów silnika prądu stałego, ale doskonale sprawdza się też jako regulator mocy np. żarówki. Schemat układu przedstawiono na rys. 1. Elementy C1...C4 i L1 filtrują napięcie zasilające. Jest to niezmiernie ważne dla układów z impulsowym stopniem mocy. Stabilizator IC3 wraz z C5 i C6 dostarcza napięcie 5 V dla mikrokontrolera IC2. Elementy C5 i C9 zapewniają zerowanie układu po załączeniu zasilania. Tranzystory T5 i T6 wraz z elementami R2, R7...R9 dopasowują poziomy napięć dla bramek układu IC1, a te stanowią sterownik tranzystorów wyjściowych. Pracą urządzenia steruje bogato wyposażony mikrokontroler ATtiny45 w niepozornej obudowie ośmionóżkowej. Głównym zadaniem programu jest konfiguracja wewnętrznego timera mikrokontrolera jako generatora PWM, w którym wypełnienie impulsu jest proporcjonalne do napięcia na wejściu przetwornika analogowo-cyfrowego wbudowanego w IC2. Częstotliwość pracy generatora PWM wynosi około 500 Hz dla trybu pierwszego oraz około 250 Hz dla trybów 2 i 3.
Obsługa
Obsługa urządzenia odbywa się za pomocą potencjometru POT1 i przycisku S1. Krótkie wciśnięcie przycisku powoduje natychmiastowe odłączenie napięcia wyjściowego i przejście w stan oczekiwania co sygnalizuje migająca dioda LED. Ponowne krótkie wciśnięcie powoduje wznowienie pracy w trybie, w jakim została ona przerwana. Będzie to sygnalizowane ciągłym świeceniem diody. Dłuższe przytrzymanie przycisku powoduje zmianę trybu pracy, w zależności od położenia potencjometru, co jest zasygnalizowane kilkakrotnym mignięciem diody. Każda zmiana trybu pracy powoduje przejście w tryb oczekiwania, musimy więc potwierdzić zmianę trybu ponownym, krótkim wciśnięciem przycisku lub dla trybu 2 i 3 obróceniem suwaka potencjometru do zera. Jeśli potencjometr będzie w środkowym położeniu, zostanie włączony tryb pierwszy, w którym środkowe położenie to stan zerowy – brak napięcia na wyjściach. Obrót w prawą stronę powoduje podanie na wyjście sygnału PWM o polaryzacji podstawowej, czyli na OUT_A plus zasilania, a na OUT_B minus i wypełnieniu proporcjonalnym do kąta obrotu. Obrót w lewo powoduje identyczny efekt, ale z polaryzacją odwrotną, czyli na OUT_A minus zasilania, a na OUT_B plus. Przy podłączonym silniku powoduje to regulację obrotów najpierw w jednym, a potem w przeciwnym kierunku, z punktem neutralnym na środku skali. Przytrzymanie przycisku, gdy potencjometr będzie w położeniu prawym lub lewym, jak i lekko odchylonym od środkowego położenia, powoduje przejście do trybów 2 lub 3 w zależności od położenia suwaka. Praca w tych trybach umożliwia regulację stopnia wypełnienia sygnału PWM tylko dla jednej polaryzacji wyjścia, za to w pełnym zakresie obrotowym potencjometru. Umożliwia to dokładną regulację mocy silnika bez zmiany kierunku obrotów. Urządzenie posiada także funkcję soft-start – przy wyjściu ze stanu oczekiwania wypełnienie sygnału PWM nie uzyskuje od razu zadanej wartości, ale narasta do niej stopniowo. Powoduje to łagodny rozruch silnika i redukuje prąd rozruchowy. Czas trwania funkcji soft-start możemy ustawić, przez przytrzymanie przycisku i włączenie zasilania urządzenia. Zostanie to zasygnalizowane kilkakrotnym mignięciem diody. Czas ten będzie proporcjonalny do położenia potencjometru, przy maksymalnym wychyleniu wyniesie około 5 sekund. Urządzenie zapamiętuje tryb pracy i czas soft-startu po wyłączeniu zasilania, więc wystarczy jednorazowa konfiguracja.
Możliwości modyfikacji
Warto zauważyć, że parametrem regulującym jest wartość napięcia z potencjometru, ale równie dobrze może to być napięcie z innego źródła (układu). Możemy zatem uzyskać efekt modulacji PWM wywoływanej innym przebiegiem zmiennym. Dołączając prosty układ RC w miejsce środkowego wyprowadzenia potencjometru, możemy zbudować powolny ściemniacz lub rozjaśniacz żarówki, albo wręcz efekt ściemniania jednej, a potem rozjaśniania drugiej żarówki (rys. 2).
Układ pracuje poprawnie z napięciem do 20 V, nie należy jednak przekraczać tej wartości, ponieważ spowoduje to uszkodzenie IC1. Dzięki pracy impulsowej, na tranzystorach wyjściowych wydziela się niewielka ilość ciepła. Sterowanie żarówką samochodową 12 V/45 W nie wymagało dodatkowego radiatora. Prąd obciążenia równy 4 A to wartość, dla której urządzenie było testowane, ale maksymalny prąd tranzystorów stopnia mocy jest o wiele większy i po zastosowaniu odpowiedniego radiatora i zwiększeniu średnicy kilku ścieżek, np. przez ocynowanie, można przeprowadzić próby z większymi prądami.
Damian Sosnowski
- R3, R4, R11, R12: 10 Ω
- R13: 560 Ω
- R2, R7, R8, R9: 4,7 kΩ
- R5: 10 kΩ
- C1: 470 µF /35 V
- C2, C5, C7: 100 nF MKT
- C3, C6: 100 µF/25 V
- C4: 100 nF ceramiczny
- C8: 10 nF MKT
- C9: 10 µF/25 V
- C10, C11: 10 nF ceramiczny
- T1, T2: BUZ11
- T3, T4: IRF9530
- T5,T6: BC547
- IC1: CD4069
- IC2: ATtiny45
- IC3: 78L05
- LED1: żółta dioda LED 5 mm
- POT1: potencjometr 10 kΩ A
- L1: dławik 1 mH
- S1: mikroswitch (wysoki)
- ZAS, MOTOR: ARK2
- Podstawka DIL8, DIL14