wersja mobilna | kontakt z nami

Analog Discovery 2 w praktyce (1). Konfiguracja wstępna

Numer: Luty/2019

W artykule opisano proces instalacji środowiska Digilent Waveforms i konfiguracji Analog Discovery 2. Omówione zostały podstawowe funkcje urządzenia - zasilacz symetryczny, woltomierz oraz generator funkcyjny. Analog Discovery 2 to urządzenie, które umożliwia wykonanie nieskomplikowanego laboratorium do pracy z układami analogowymi, mikrokontrolerami oraz innymi systemami cyfrowymi. Producent dostarcza szereg funkcji, które znacznie przyśpieszają, a niekiedy wręcz umożliwiają zaprojektowanie systemu lub napisanie programu dla mikrokontrolera.

Pobierz PDF

rys-1Płytkę Analog Discovery 2 można zastosować między innymi w:

  • Analizie interfejsów cyfrowych, na przykład SPI, I2C.
  • Debugowaniu pracy mikrokontrolerów, na przykład do obserwowania sygnałów sterujących kodekiem audio, wyświetlaczem graficznym itp.
  • Obserwacji sygnałów analogowych (np. z przetwornika C/A) i ich widma.
  • Generowaniu sygnałów analogowych (np. do przetwornika A/C).
  • Pomiarze charakterystyk układów punkt po punkcie oraz poprzez analizę widma.
  • Projektowaniu układów analogowych opartych o wzmacniacze operacyjne – użycie zasilania symetrycznego, generatora funkcyjnego i oscyloskopu.
  • Projektowaniu układów wyższej częstotliwości (np. analiza impedancji ścieżek na płytce drukowanej).

Funkcje płytki Analog Discovery 2 wymieniono w tabeli 1. Oprócz wymienionych istnieje też możliwość implementacji innych interfejsów za pomocą skryptów.

Konfigurowanie Analog Discovery 2

Aby móc używać AD2, należy zainstalować środowisko Digilent Waveforms (do pobrania ze strony http://bit.ly/2DS2USt). Konfigurowanie urządzenia (instalowanie sterowników) jest przeprowadzane automatycznie podczas instalowania.

Po uruchomieniu środowiska, ujrzymy okno wyboru urządzenia (rysunek 1). Jeżeli instalacja przebiegła poprawnie, wyświetli się urządzenie Discovery 2 i jego numer seryjny (rysunek 2). Możliwe jest użycie WaveForms w trybie testowym bez podłączonego AD2. Ewentualne zmiany używanego urządzenia można przeprowadzić klikając w menu Settings ’ Device manager.

Po wybraniu używanego urządzenia AD2 wyświetli się okno główne środowiska (workspace). Workspace jest odpowiednikiem „projektu”. Możliwy jest zapis konfiguracji, na przykład, ustawienia oscyloskopu lub generatora. Po lewej stronie ekranu są widoczne przyciski odpowiadające poszczególnym funkcjom AD2:tab1

  • Scope – oscyloskop. 
  • Wavegen – generator funkcyjny.
  • Supplies – zasilacz symetryczny.
  • Voltmeter – woltomierz.
  • Logger – akwizycja danych z woltomierza.
  • Logic – analizator logiczny.
  • Patterns – generator sygnałów cyfrowych.
  • StaticIO – wskaźniki stanów sygnałów cyfrowych (w formie pseudo LED).
  • Spectrum – analizator widma.
  • Network – charakterystyki Bodego, Nyquista.
  • Impedance – analizator impedancji.
  • Protocol – analizator interfejsów cyfrowych.
  • Script – umożliwia stworzenie skryptów do AD2.

rys-3Na rysunku 3 pokazano złącze płytki Analog Discovery 2, natomiast w tabeli 2 umieszczono opisy poszczególnych sygnałów.

Przykład 1 – pomiar napięcia na suwaku potencjometru

Najprostszym pomiarem, który można wykonać korzystając z Analog Discovery 2 jest pomiar napięcia. W tym przykładzie posłużymy się potencjometrem, który pozwoli na regulowanie mierzonego napięcia. Schemat połączeń obwodu testowego pokazano na rysunku 4. Złącza zasilacza doprowadzono do pinów 1 (V+) i 3 (GND) potencjometru. Pomiar napięcia odbywa się poprzez sygnały oscyloskopu: 1+1–. Różnicowe wejście dodatnie dołączono do pinu 2 potencjometru, a ujemne do GND. Nie ma znaczenia, do którego GND w AD2 dołączymy masę układu.

Po wykonaniu połączeń trzeba skonfigurować zasilacz. Po kliknięciu na przycisk SuppliesWaveForms zostanie wyświetlone okno przedstawione na rysunku 5.Obok nazwy Supplies (1) znajduje się symbol strzałki w prawo „u”, który można kliknąć, aby włączyć zasilacz. Jeżeli zasilacz jest włączony, to w tym miejscu jest wyświetlany symbol kropki „=”. Jeśli zasilacz zostanie przeciążony, to zostanie wyłączony, a stan urządzenia ponownie wróci do znaku „u”.

W polu Master Enable (2) można włączyć/wyłączyć zasilacz (oba napięcia – V+ i V–). Pola 3 i 4 służą do włączenia, odpowiednio, napięcia dodatniego i ujemnego. Po prawej stronie jest widoczne pole Voltage, do którego jest wpisywana wartość napięcia zasilającego. Aby skonfigurować dodatnie zasilanie o wartości +5 V, należy w polu Voltage przy (2) wpisać wartość „5V” i kliknąć pole Supplies (1). Na rysunku 6 pokazano okno poprawnie skonfigurowanego zasilacza.

Aby wykonać pomiar napięcia, należy w oknie głównym programu WaveForms kliknąć pole Voltmeter. Pomiar nie wymaga konfiguracji, wystarczy tylko uruchomić woltomierz (1). Przycisk Single (2) umożliwia wykonanie pojedynczego pomiaru. Pomiary wykonywane są w trybie:

  • DC (3, składowa stała napięcia).
  • AC RMS (4, wartość skuteczna składowej zmiennej napięcia).
  • True RMS (5, wartość skuteczna całego przebiegu napięciowego).

rys-5Przy pomiarze napięcia występującego na suwaku potencjometru wykorzystujemy pomiar DC. Przykładowy pomiar pokazano na rysunku 7.

Przykład 2 – pomiar charakterystyki filtru analogowego

Płytka Analog Discovery 2 może służyć także do pomiaru charakterystyk układów analogowych. W tym przykładzie zostanie przedstawiony sposób pomiaru charakterystyki punkt po punkcie. Do pomiaru zostanie wykorzystany filtr dolnoprzepustowy RC pierwszego rzędu. Na rysunku 8 zilustrowano schemat dołączenia płytki AD2 do filtru. Zastosowano w nim R=1 kV i C=1 mF, co daje częstotliwość odcięcia rzędu 160 Hz.

Do pomiaru charakterystyki filtru jest wymagany sygnał sinusoidalny o zadanej częstotliwości i amplitudzie 1 V. Taki sygnał można uzyskać korzystając z generatora funkcyjnego w AD2 (wavegen). Pomiar charakterystyki zostanie wykonany pośrednio poprzez pomiar napięcia AC RMS (rysunek 9). Aby uruchomić generator funkcyjny, należy kliknąć pole Wavegen w oknie głównym programu Waveforms.

Okno konfiguracji generatora przedstawiono na rysunku 10. W polu zakładki (1) jest wyświetlana nazwa generatora i przycisk „u/=”, którym włączamy lub wyłączamy moduł. W wypadku zwarcia lub zbyt dużego obciążenia, generator wyłącza się automatycznie. W polu (2) znajdują się ustawienia globalne – włączenie/wyłaczenie wszystkich kanałów, wybór kanałów (channel) oraz ustawienia synchronizacji (np. generowanie dwóch przebiegów sinusoidalnych o różnej częstotliwości, ale zsynchronizowanych fazowo). Kolejne pole (3) to ustawienia ogólne konkretnego kanału – włączenie/wyłączenie i tryb działania : dla potrzeb przykładu wykorzystywany będzie jedynie tryb simple: możliwe jest generowanie podstawowych kształtów sygnałów i zmiana ich podstawowych parametrów. Parametry ustawiane są w polu (4) :

  • Type – kształt sygnału (np. sinus, prostokąt, trójkąt).
  • Frequency – częstotliwość.
  • Amplitude – amplituda sygnału.
  • Offset – składowa stała DC.
  • Symmetry – symetryczne przekształcenie sygnału wokół „środka układu współrzędnych (5)”.
  • Phase – przesunięcie fazowe.

Jak wspomniano, do pomiaru charakterystyki jest potrzebna fala sinusoidalna o amplitudzie 1 V i zakresie częstotliwości np. 20 Hz…20 kHz. Wystarczy dobrać odpowiednie parametry i kliknąć „u” (1). Pomiar wartości napięcia odbywa się za pomoca modułu Voltmeter. Należy pamiętać, że wartość zmierzonego napięcia to napięcie skuteczne. Sinusoida o amplitudzie 1 V ma napięcie skuteczne około 0,7 V. Przykładowy widok okna pomiarów napięcia przedstawiono na rysunku 10.

rys-10Taki pomiar może być żmudny i pracochłonny. Na szczęscie, AD2 udostępnia także moduł akwizycji danych (logger). Można więc w krótkim czasie zmierzyć charakterystykę filtru korzystając z funkcji przemiatania częstotliwości (sweep). Na początek wrócmy do generatora funkcyjnego. W polu (3) należy zmienić tryb działania generatora z simple na sweep. Widok konfiguracji przedstawiono na rysunku 11. Oprócz pól z trybu simple są wyświetlane dwie nowe opcje :

Przemiatanie częstotliwości – „sweep from 10 Hz to 20 kHz in 1 min” oznacza, że częstotliwość generowanego przebeigu sinusoidalnego będzie zmieniała się od 10 Hz do 20 kHz w czasie 1 minuty. Ta zmiana jest wykonywana w pętli nieskończonej.

Tłumienie amplitudy – „damp to 2 V in 1 ms” (nieaktywne) oznacza, że amplituda zmniejszy się do 2 V w czasie 1 ms.

Po skonfigurowaniu generatora wystarczy kliknąć „u” (1). Można także zresetować przemiatanie klikając „=”, a później ponownie „u”.

rys-11Aby rozpocząć akwizycję danych, należy kliknąć pole logger w głownym oknie programu WaveForms. Okno modułu logger z już zmierzoną charakterystyką filtru przedstawiono na rysunku 12. W polu (1) można skonfigurować parametry ogólne akwizycji danych:

  • Run (pomiar ciągły), single (pojedynczy pomiar).
  • History – czas akwizycji danych, które są wyświetlane na ekranie, np. 1 minuta akwizycji danych widoczna na ekranie.
  • Update – czas trwania jednej próbki (odwrótność częstotliwości próbkowania).

W polu 2 mamy możliwość konfiguracji obserwowanych sygnałów :

  • C1 lub C2 – wybór kanału.
  • DC, True RMS, AC RMS – tryb pomiaru.
  • Plot – wykreślenie pomiarów na ekranie; wykreślenie pomiaru na ekranie także możliwe poprzez zaznaczenie wiersza odpowiadającejgo konkretnemu trybowi pomiaru
  • Color – wybór koloru wykresu.

rys-12Pole (3) to ekran prezentujący dane pomiarowe. Na rysunku 12 jest pokazana zmierzona charakterystyka filtru pierwszego rzędu. Charakterystyka jest powielana, ponieważ przemiatanie częstotliwości jest zapętlone. Interpretacja charakterystyki:

  • Przemiatanie częstotliwości od 20 Hz do 20 kHz w 1 minutę.
  • Rozdzielczość częstotliwości.
  • Częstotliwość.

Należy zmierzyć czas pomiędzy pierwszym punktem charakterystyki a punktem, dla którego napięcie V=0,5 V.

Na podstawie czasu obliczamy liczbę próbek i bezpośrednio odczytujemy częstotliwość (charakterystyka na rysunku nie odzwierciedla charakterystyki filtru w przykładzie 2).

Jakub Wiczyński

---

Autor artykułu zdobył jedną z czterech głównych nagród w międzynarodowym konkursie inżynierskim Digilent Design Contest 2018, który odbył się w Rumunii. Przedmiotem konkursu było zaprojektowanie i skonstruowanie urządzenia na bazie sprzętu dostarczonego przez organizatora, w tym przypadku przyrządu Analog Discovery 2. Projekt Jakuba Wiczyńskiego o nazwie Additive Synthesizer otrzymał nagrodę specjalną Digilent Instrumentation Prize, przyznawaną za najlepsze wykorzystanie zasobów sprzętowych.

tab2

Pozostałe artykuły

Drukowanie 3D w metalu

Numer: Luty/2019

Wiele mówi się o drukarkach 3D, ale głównie w kontekście zastosowań do wykonywania praprototypów. Przeciętnemu użytkownikowi drukarka 3D kojarzy się głównie z takimi materiałami, jak niewymagające PLA i problemami powodowanymi przez tanie, najczęściej zakupione gdzieś na serwisie aukcyjnym urządzenie do druku 3D. Tymczasem jest to technologia, której znaczenie ogromnie rośnie i myślę, że za jakiś czas nie sposób będzie obejść ...

STM32CubeMX v 5.0

Numer: Luty/2019

Nowoczesne, skomplikowane i wydajne mikrokontrolery mają wiele wbudowanych bloków funkcjonalnych, od nieskomplikowanych układów GPIO poprzez moduły komunikacyjne UART, SPI, I2C, liczniki/timery, do najbardziej skomplikowanych interfejsów typu USB OTG. Konfigurowanie rozbudowanych peryferii jest zajęciem żmudnym i podatnym na możliwość popełnienia błędów. Dlatego producenci oprogramowania narzędziowego wbudowują w pakiety IDE konfiguratory, ...

Signal Integrity - co to takiego i dlaczego inżynier elektronik powinien zainteresować się tematem?

Numer: Wrzesień/2018

Jeśli kiedykolwiek długość ścieżki zaczyna być porównywalna z długością fali najszybszego sygnału, musisz zacząć interesować się tematem ?high speed design?, który bynajmniej nie oznacza szybkiego projektowania, ale specjalistyczną wiedzę w zakresie ścieżek wiodących szybkozmienne sygnały.

Implementacja charakterystyk czujników w podwójnie logarytmicznym układzie współrzędnych w systemach mikroprocesorowych

Numer: Sierpień/2018

Wszelkiego rodzaju czujniki wielkości nieelektrycznych stanowią łakomy kąsek nawet dla mało doświadczonych elektroników. Dużą część pracy związanej ze sprzętem załatwiają gotowce w postaci Arduino, Raspberry Pi czy wielu innych podobnych systemów. Decydując się na pomiar konkretnej wielkości fizycznej w wielu przypadkach można nawet dobrać odpowiedni dla danej platformy moduł czujnika. Do pełni szczęścia pozostaje więc tylko ...

Moduły do odtwarzania plików mp3

Numer: Lipiec/2018

Niegdyś na łamach Elektroniki Praktycznej był opisywany słynny odtwarzacz Yampp. Yampp został zaprojektowany przez Jespera Hansena, a oprogramowanie do niego było rozwijane przez Romualda Białego. Dzisiaj budowanie takich odtwarzaczy plików mp3 nie ma większego sensu. Każdy komputer, tablet czy smartfon potrafi je odtwarzać z lepszą lub gorszą jakością. Są jednak zastosowania, w których wykorzystanie urządzeń mobilnych do odtwarzania ...

Mobilna
Elektronika
Praktyczna

Elektronika Praktyczna

Luty 2019

PrenumerataePrenumerataKup w kiosku wysyłkowym

Elektronika Praktyczna Plus

lipiec - grudzień 2012

Kup w kiosku wysyłkowym