wersja mobilna | kontakt z nami

Zestaw uruchomieniowy IoT od firmy Cypress

Numer: Styczeń/2017

Firmy ? producenci podzespołów wręcz prześcigają się oferując nam coraz to ciekawsze zestawy ewaluacyjne z zamontowanymi coraz to bardziej interesującymi modułami peryferyjnymi. A to wszystko po to, aby przekonać nas, że warto skorzystać z ich oferty. Cały ten szum generuje wkraczająca coraz to szerzej w nasze życie technologia IoT. Przyjrzymy się jednemu z najnowszych zestawów Cypressa.

Pobierz PDF

rys-1Internet Rzeczy rozwija się gwałtownie, może nawet zbyt szybko. Wszystkie urządzenia na gwałt są dołączone do sieci, pewnie za kilka dni, maksymalnie miesięcy, sznurowadła będą się komunikowały z trampkami, aby wymieniać się jakże istotnymi danymi o swoim stanie. Najlepiej przy tym wysyłając je do chmury w celu porównania poprawności sznurowania z innymi zaprzyjaźnionymi parami obuwia, nie wspominając o automatycznym umówieniu wizyty u ortopedy, gdy wykryte zostaną chociażby minimalne nieprawidłowości w sposobie chodzenia i oczywiście, codziennego przypominania nam o konieczności zwiększenia naszej aktywności fizycznej.

Tyle tytułem żartu. Tak czy inaczej, być może w niedalekiej przyszłości, przyjedzie nam się zmierzyć z podobnymi problemami, może o nieco większym „ciężarze” gatunkowym. Takimi, jak chociażby monitorowanie przesyłek, pojazdów, poziomu wody w rzece, wskazań liczników lub mierników, a wszystko za pomocą Internetu Rzeczy. W takiej sytuacji zadanie może nam ułatwić pokazany na rysunku 1 zestaw uruchomieniowy Cypressa – „Solar Powered IoT Device Kit”.

rys-2Zestaw odróżnia się zarówno wyglądem, jak i ceną od dotychczasowej oferty budżetowych „PSoC-kitów” za symbolicznego dolara. Jest opakowany w estetyczne pudełko i kosztuje 49 USD. W zamian otrzymujemy dwie płytki drukowane, w tym jedną z nadajnikiem BLE (beacon) z wbudowanym układem przetwornicy współpracującej z fotoogniwem (układ typu energy harvester), a drugą z mostkiem BLE/USB, ogniwo słoneczne, kabel USB, kilka zworek, kondensator, rezystor i skróconą instrukcję „szybkiego startu” - czyli wszystko, co zdaniem Cypressa konieczne jest do rozpoczęcia pracy z IoT.

Spójrzmy na rysunek 2, na którym pokazano schemat blokowy zestawu, a dokładnie schemat płytki energy harvestera. Sercem jest moduł BLE typu CYBLE-022001-00, który prawdopodobnie jest najmniejszym aktualnie dostępnym w handlu modułem BLE z wbudowana anteną. Wzmianka o nim pojawiła się już przy opisie PSoC4247 w grudniowym numerze EP. Zasilanie modułu zapewnia PMIC (Power Management IC) typu S6AE101A. Jest to najprostszy z wprowadzonej ostatnio do oferty rodziny energy harvesterów. Umożliwia współpracę z dwoma źródłami zasilania. Typowo są to ogniwo solarne oraz bateria litowa (opcja). Układ odpowiada za pozyskiwanie energii z otoczenia oraz za efektywne jej magazynowanie we współpracującym kondensatorze wraz z automatycznym przełączaniem źródeł zasilania. Dla rozpoczęcia pracy układ potrzebuje jedynie 12 mW mocy. W zestawie dołączone jest ogniwo słoneczne, zapewniające zasilanie modułu. Producent zapewnia poprawną pracę zestawu przy oświetleniu większym od 200 lx, to jest transmisję co 6 sekund w trybie WSN (sensor bezprzewodowy). Opcjonalnie do zasilania może być używana bateria, przetwornik piezoelektryczny lub elektromagnetyczny, współpracujący z wbudowanym prostownikiem. Elementy opcjonalne dołączamy do złącza J1 modułu. Możliwe jest zwiększenie pojemności wbudowanego kondensatora magazynującego energię poprzez połączenie go równolegle z kondensatorem 220 mF dołączonym do zestawu.

rys-3Na płytce wbudowano przetwornik temperatury i wilgotności SI7020 komunikujący się z CYBLE poprzez interfejs I2C. Zestaw uzupełniają dioda LED i przycisk Reset. Sygnały interfejsów I2C/UART/GPIO CYBLE dostępne są na złączu J2 (niewlutowanym). Na płytce jest zamontowany także mostek USB/Serial dla wgrywania oprogramowania modułu CYBLE w trybie bootloadera. „Pełne” programowanie i debugowanie modułu jest możliwe także z pominięciem mostka USB/Serial, poprzez złącze SWD programatorem MiniProg3. Płytka jest więc kompletna z punktu widzenia realizacji bezprzewodowego punktu pomiarowego.

Druga płytką jest mostek USB/BLE, zbudowany w oparciu o procesor CYBL10162 (Proc-BLE Device), antenę wykonaną na obwodzie drukowanym. Jako programator zastosowano KitProg na PSoC 5LP, znany z wcześniejszych zestawów uruchomieniowych. Płytka zawiera trzy LED, przycisk reset BLE i przycisk użytkownika. Podobnie jak poprzednio, programowanie jest możliwe przez mostek USB/UART lub złącze SWD programatorem zewnętrznym.

Do zestawu dołączono pełną dokumentację (do pobrania ze strony producenta), przykłady oraz podstawowe oprogramowanie narzędziowe (PMIC/Teraterm) dostępne po zainstalowaniu oprogramowania SOLARPOWEREDKITSetupOnlyPackage.exe.


Nie pozostaje więc nic innego, jak przetestowanie działania zestawu. W pierwszej kolejności po przyłączeniu mostka USB/BLE są instalowane sterowniki, między innymi driver portu COM, którego numer będzie przydatny później. Następnie instalujemy drivery płytki harvestera przełączając zworę w tryb zasilania USB i łącząc ją z komputerem PC za pomocą dostępnego w zestawie kabla mini USB. Po instalacji płytkę odłączamy i przywracamy położenie J4 do pozycji EH. Do płytki harvestera przyłączamy ogniwo solarne (piny SOLAR+, GND) i zapewniamy odpowiednie oświetlenie. Po zgromadzeniu odpowiedniej energii moduły nawiążą komunikację, co jest sygnalizowane cyklicznym zaświecaniem się niebieskiej LED w mostku USB/BLE. Jeżeli tak się nie stanie, to konieczne jest doświetlenie ogniwa lub sprawdzenie poprawności połączeń.

rys-4 rys-5 rys-6

Po pomyślnej instalacji należy przejść do katalogu gdzie zainstalowane zostało oprogramowanie zestawu. W podkatalogu PMIC Software uruchamiamy program PMIC.exe. Jest to monitor aktywności umożliwiający wizualizację danych odebranych z modułu harvestera (rysunek 3). Po wybraniu opcji ViewModeDistance Mode oprogramowanie na podstawie danych z modułu określa siłę sygnału RSSI i przybliżone położenie modułu. Aby wykorzystać funkcję WSN+BLE Beacon (sensor bezprzewodowy), należy aktywować wbudowany czujnik SI7020. W tym celu ponownie łączymy moduł harvestera z PC i uruchamiamy terminal Teraterm znajdujący się w katalogi PMIC Software. Wybieramy nowe połączenie szeregowe FileNew Connection, w ustawieniach terminala SetupTerminal załączamy echo i opcje Receive=Auto, Transmit CR+LF, a w ustawieniach portu SetupSerial Port opcje 115200,8N1 (rysunki 4…6).

rys-7Aby wprowadzić moduł w tryb WSN, należy nacisnąć przycisk XRES, zatrzymana zostanie transmisja BLE, moduł wejdzie w tryb konfiguracji – potwierdzenie ujrzymy w okienku terminala. Po zakończeniu aktywacji Bootloadera, w terminalu aktywujemy sensory, wpisując „sensor on”, co zostaje potwierdzone i możemy zakończyć tryb konfiguracji poleceniem „exit” (rysunek 7). Następnie, odłączyć kabel USB, przywrócić położenie zwory J4=EH. W celu monitorowania pracy beacona, uruchamiamy ponownie PMIC.exe, wybierając monitorowanie temperatury lub wilgotności (ViewModeHumidity {Temperature} mode). Oprogramowanie będzie gromadziło dane i przedstawiało je w formie graficznej, jak pokazano na rysunku 8. Po sprawdzeniu działania zestawu możemy przejść do tworzenia własnych aplikacji np. przez modyfikację plików przykładowych.

rys-8Zestaw startowy spełnia więc swoją funkcję i jest dobrym wprowadzeniem do IoT zarówno od strony sprzętowej jak i programowej. Szczególnie cieszy fakt dostarczania zestawu w pełniej niezbędnej konfiguracji, pomimo wyższej ceny, zwalnia to z poszukiwania odpowiedniego ogniwa słonecznego, mostka BLE itp. Wszystkie kody źródłowe wraz z opisami protokołów i dokumentacją kitu znajdują się w katalogu instalacyjnym, co umożliwia uruchomienie w przysłowiowe 10 minut i szybkie przejście do własnych aplikacji, tym bardziej, że zapowiadane są przez Cypressa bardziej komercyjne rozwiązania, tj. beacony z superkondensatorem w estetycznej obudowie, korzystające z podobnych rozwiązań, jak na płytce harvestera.

Adam Tatuś, EP

 

Pozostałe artykuły

PAT-10. Tester bezpieczeństwa elektrycznego urządzeń

Numer: Wrzesień/2017

Postęp techniczny w dziedzinie elektroniki, nie tylko mikrokontrolerów i pamięci, spowodował, że stało się możliwe budowanie złożonych funkcjonalnie przyrządów pomiarowych i zamykanie ich w niewielkiej, kompaktowej obudowie. Wszystkie funkcje pomiarowe i testowe są obsługiwane przez odpowiednie oprogramowanie, a rola użytkownika sprowadza się do uruchomienia żądanej funkcji. Takim właśnie przyrządem jest testowany przez nas produkt ...

Spektrometr GL Spectis 1.0 Touch, Precyzyjne pomiary oświetlenia z funkcją Flicker

Numer: Wrzesień/2017

Często o naszym samopoczuciu decydują czynniki, z których istnienia nawet nie zdajemy sobie sprawy. Ta nieświadomość kończy się nawracającymi bólami głowy, kłopotami z koncentracją itp. Powodów takiego stanu może być w dzisiejszych czasach całkiem sporo. Poszukiwania warto rozpocząć od oświetlenia.

Termometr/higrometr Voltcraft PL-100TRH

Numer: Wrzesień/2017

Temperatura i wilgotność są jednymi z najczęściej mierzonych wielkości fizycznych. Zwykle mierzymy wilgotność w temperaturze akceptowalnej dla człowieka lub roślin. W takiej sytuacji dobrze sprawdzi się termistor lub sensor półprzewodnikowy, ale do niektórych pomiarów jest potrzebny inny rodzaj czujnika, umożliwiający pomiar wyższej temperatury, rzędu 200°C lub więcej.

Multimetr cęgowy Voltcraft VC-540

Numer: Wrzesień/2016

Pomiar prądu o dużym natężeniu byłby bardzo trudny lub wręcz niemożliwy, gdyby nie opracowano mierników cęgowych, ponieważ pomiary w obwodach wysokoprądowych zawsze wiążą się z zagrożeniem życia. Na ich potrzeby najpierw opracowano przekładniki, a następnie mierniki cęgowe. Oba te rozwiązania są dziś używane, ale w warsztacie elektronika lub elektryka lepiej sprawdzą się cęgi pomiarowe. Dzięki zastosowaniu miernika cęgowego ...

Stacja do montażu i demontażu Tenma 21-10130

Numer: Wrzesień/2016

Do lamusa odeszły czasy, w których do lutowania podzespołów wystarczyła zwykła lutownica. Ba! Nie wszystkie komponenty można przylutować za pomocą nawet bardzo dobrej lutownicy grzałkowej, nie mówiąc już o transformatorowej. Przyczyną jest miniaturyzacja obudów komponentów coraz częściej przystosowanych jedynie do montażu automatycznego. Na przykład, w handlu są dostępne mikrokontrolery 32-bitowe Cortex-M0 mające obudowę o ...

Mobilna
Elektronika
Praktyczna

Elektronika Praktyczna

Wrzesień 2017

PrenumerataePrenumerataKup w kiosku wysyłkowym

Elektronika Praktyczna Plus

lipiec - grudzień 2012

Kup w kiosku wysyłkowym