wersja mobilna | kontakt z nami

Moduł + płyta bazowa = optymalny wybór

Numer: Luty/2016

Nadeszły czasy, w których budowa niemal dowolnego urządzenia elektronicznego wymaga zastosowania wydajnego mikroprocesora i niemałej ilości pamięci operacyjnej. Samodzielna aplikacja tych podzespołów jest jednak skomplikowana i kosztowna, a gotowe płyty główne i komputery jednopłytkowe rzadko naprawdę dobrze pasują do specyficznych aplikacji - choćby pod względem dostępności i rozmieszczenia wyprowadzeń. Dlatego coraz bardzie popularne staje się korzystanie z modułów procesorowych, do których łatwo można samemu zaprojektować płytę bazową lub skorzystać z gotowych platform. Postępowanie to pozwala optymalnie dobrać moc procesora, ilość pamięci oraz zestaw wyprowadzeń do konkretnych potrzeb i szybko wprowadzić produkt do sprzedaży.

Pobierz PDF
Dodatkowe informacje

GLYN Poland
ul. Krupnicza 13, 50-075 Wrocław
tel.: 71 782 87 58, faks 71 782 87 59
e-mail: sales@glyn.pl, www.glyn.pl

Na rynku funkcjonuje wiele różnych standardów modułów procesorowych, określanych mianem COM (Computer-On-Module) lub SOM (System-On-Module). Niektóre z nich korzystają ze złącza krawędziowego SO-DIMM, takiego jak w przypadku niskoprofilowych pamięci RAM. Użycie tego typu złącza jest dosyć dobrym wyborem, gdyż pozwala skorzystać z popularnego, a więc i niedrogiego gniazda. Trzeba jednak zaznaczyć, że nie wszystkie moduły ze złączem SO-DIMM są ze sobą kompatybilne pod względem wyprowadzonych sygnałów. Istnieją różne mniej lub bardziej popularne standardy i praktyki poszczególnych firm, które określają rozkład linii na złączu SO-DIMM.

Moduły TX

Rysunek 1. Rozmieszczenie wyprowadzeń w modułach w formacie TX

Jednym z takich standardów jest TX. Określa on nie tylko rozkład wyprowadzeń (rysunek 1), ale też - poniekąd przez konieczność obsłużenia zdefiniowanych wejść i wyjść - zestaw rodzajów komponentów, jakie muszą się znaleźć na module. Moduły TX mają też znormalizowane wymiary: 68 mm×26 mm lub 68 mm×31 mm. Format TX opracowano z myślą o różnorodnych aplikacjach wbudowanych, w związku z czym moduły zawierają przede wszystkim procesor, pamięć operacyjną, układ graficzny, interfejsy sieciowe i komunikacyjne, takie jak USB. Wszystkie sygnały pomiędzy modułem a płytą bazową przenoszone są przez przemysłowej klasy gniazdo SO-DIMM, co zapewnia pewność połączenia nawet w przypadku występowania wibracji i wstrząsów.

Wykorzystanie dostępnych linii sygnałowych i interfejsów leży po stronie twórców płyt bazowych - wybór interesujących ich wejść i wyjść, które zostaną wyprowadzone na zewnętrzne złącza lub połączone z wlutowanymi peryferiami zależy od aplikacji. Dzięki temu można zminimalizować koszt projektu i zrezygnować z obsługi niepotrzebnych wyprowadzeń. Co więcej, dostępność wielu różnych wersji modułów TX sprawia, że urządzenia tworzone w oparciu o te podzespoły są bardzo skalowalne. Wystarczy wymienić moduł procesorowy, by np. zastąpić 1-rdzeniowy procesor taktowany zegarem 0,5 GHz, modelem z czterema 1-gigahercowymi rdzeniami. W efekcie, twórca projektu może bez żadnego dodatkowego wysiłku wprowadzić na rynek ten sam produkt w odmianach o różnej wydajności.

Moduły firmy Ka-Ro

Fotografia 2. Moduł Ka-Ro TX6UL

Duży wybór modułów TX można znaleźć w firmie Ka-Ro, która jest twórcą standardu TX i od 6 lat projektuje kolejne modele (rysunek 2). Na przestrzeni lat wprowadzono wiele serii modułów, dla których przygotowano sterowniki do różnych systemów operacyjnych. Aktualnie do nowych projektów polecane są przede wszystkim moduły serii TX6, które mają sterowniki do systemów Windows Embedded Compact 7 i Embedded Compact 2013 oraz Linux. Stasze modele (TX28, TX48 i TX53 wspierają Windows EC7) wciąż są oferowane i pozwalają na realizację aplikacji wymagających mniejszej mocy obliczeniowej. Moduły Ka-Ro produkowane są w Niemczech w oparciu o procesory firm Freescale (obecnie NXP), Texas Instruments i Marvell. Najnowsza seria TX6 jest podzielona na trzy kategorie, różniące się liczbą zastosowanych rdzeni:

  • TX6S obejmuje procesory jednordzeniowe,
  • TX6DL - dwurdzeniowe,
  • TX6Q - czterordzeniowe.

Tabela 1. Dostępne moduły Ka-Ro serii TX6

Wszystkie jednostki centralne serii TX6 to układy Freescale i.MX6 z rdzeniami Cortex-A9. Poszczególne modele różnią się przede wszystkim taktowaniem (800 MHz lub 1 GHz), ilością pamięci DDR3 RAM (256, 512 lub 1024 MB), szerokością szyny danych (16, 32 lub 64 bity) i pojemnością oraz formą pamięci Flash (128 MB, 4 GB eMMC lub 8 GB eMMC).

Moduły TX wymagają zasilania 3,3 V i w zależności od wykonania, mogą pracować w różnych warunkach temperaturowych - nawet w zakresie od -40 do +85°C. Maksymalna moc pobierana przez moduły serii TX6 wynosi, w zależności od wersji, od 1,4 W do 2,5 W. Moduły starszych serii są także w wersjach o poborze mocy nieprzekraczającym 0,7 W. Wato też zwrócić uwagę na duże możliwości graficzne układów - wspierają one nawet rozdzielczość 2048×1536 pikseli. Szczegółowe parametry modułów serii TX6 zostały zebrane w tabeli 1.

Płyty bazowe

Wszystkie moduły Ka-Ro w formacie TX pasują do zestawów startowych Ka-Ro oraz do zestawu opracowanego we współpracy z firmą Glyn. Ten ostatni został przygotowany z myślą o aplikacjach multimedialnych, a więc wyposażonych w wyświetlacz LCD z ekranem dotykowym.

Rysunek 3. Schemat blokowy płyty bazowej TX Mainboard 7

Pokazana na fotografii 2 płyta bazowa TX Mainboard 7 ma wymiary 100 mm×148 mm i wymaga zasilania napięciem 5 V. Ma wyprow adzone porty: ethernetowy, USB, CAN, gniazdo kart SD, szeregowe RS-485 i RS-232, audio, SATA, podwójne LVDS i RGB wideo. Ponadto, ułatwia debugowanie z użyciem interfejsu JTAG i padów do testowania przebiegów sygnałów. Ważne jest również, że producent udostępnia pełny schemat elektryczny płytki, co ułatwia rozwijanie projektów; wspiera też proces tworzenia oprogramowania. Schemat blokowy TX Mainboard 7 (TXMB7) został przedstawiony na rysunku 3.

Płytka pozwala na bardzo wygodne podłączenie oferowanych przez Glyn wyświetlaczy o wymiarach od 3,5" do 7", a do tego jej rozstaw otworów montażowych umożliwia przykręcenie PCB do wielu wyświetlaczy o przekątnej 5,7".

W razie potrzeby można podłączyć też nawet dwa dowolne inne, znacznie większe wyświetlacze.

Podsumowanie

Moduły TX są wciąż rozwijane przez firmę Ka-Ro, przy czym na rynku można znaleźć także jej naśladowców, co pozytywnie świadczy o jakości formatu. Stosowane przez Ka-Ro komponenty dobierane są tak, by móc zapewnić 10-15-letnią dostępność części zamiennych.

Fotografia 4. Płytka bazowa TX Mainboard 7

Na pochwałę zasługuje szczegółowość dokumentacji i porady w niej zawarte, jakie producent udostępnia inżynierom, wskazując m.in. rodzaje i producentów złączy i innych komponentów pasujących do modułów TX, wraz z informacjami odnośnie wytrzymałości i obszarów zastosowań danych podzespołów.

Pomocne jest też bezpłatnie udostępniane oprogramowanie. Ka-Ro to dobry przykład tego, że ciekawe moduły COM można produkować w Europie, bez konieczności znacznego podnoszenia ich ceny. Stanowią dobrą alternatywę dla produktów dalekowschodnich, a kooperacja z Glynem tym bardziej ułatwia dostęp do pomocy technicznej i kompatybilnych peryferiów: płyt bazowych, zestawów startowych i przede wszystkim wyświetlaczy. Łącznie elementy te pozwalają na szybkie budowanie nowoczesnych aplikacji, zarówno przemysłowych, jak i konsumenckich, zapewniając przy tym ich długotrwałą niezawodność.

Marcin Karbowniczek, EP

Pozostałe artykuły

Projekt maszyny do piaskowania automatycznego

Numer: Marzec/2017

Piaskarka, której dotyczy opisywana modyfikacja, została zakupiona jako używana z uszkodzoną instalacją elektryczną. Przedstawiony projekt dotyczy jedynie wymiany sterowania elektrycznego. W artykule opisano sposób działania maszyny oraz rozwiązanie służące do jej sterowania, wykorzystujące sterownik PLC firmy Mitsubishi.

Siemens LOGO! 8.FS4 - nowe możliwości ósmej generacji LOGO!

Numer: Marzec/2017

Ósma wersja popularnego LOGO! jest na rynku od kilku lat. Jego bogate wyposażenie, zaawansowane możliwości wersji 0BA8 powodowały i silne "usieciowienie" powodują, że cieszy się ona dużą popularnością wśród projektantów systemów małej automatyki.

Znakowanie długich produktów

Numer: Marzec/2016

W procesie znakowania długich produktów, w tym, między innymi, rur i kabli, sprzęt stosowany do drukowania musi zapewniać nieprzerwane nanoszenie znaków w sposób bezkontaktowy i bez konieczności przerywania procesu produkcji. Jakie drukarki sprawdzają się najlepiej w tego typu zadaniach?

Rodzaje komputerów przemysłowych, cz. 1

Numer: Luty/2016

W poprzednim numerze Elektroniki Praktycznej dokonaliśmy obszernego przeglądu komputerów jednopłytkowych, konkurencyjnych w stosunku do Raspberry PI. Nasze zestawienie obejmowało produkty nierzadko wyposażone w ponadgigahercowe, wielordzeniowe procesory i kilka gigabajtów pamięci RAM. Mogłoby się wydawać, że komputery te mają wystarczającą wydajność by sprawdzić się nie tylko w projektach amatorskich i typowo konsumenckich, ale ...

Przemysłowe drukarki atramentowe

Numer: Luty/2016

Myślę, że każdy konstruktor od czasu do czasu zadaje sobie pytanie "jak to jest robione?". Podobnie i ja niegdyś zastanawiałem się, w jaki sposób są wykonywane nadruki na kablach, nakrętkach, butelkach i opakowaniach. Drukowanie napisów na szybko przemieszczających się produktach to wszak niełatwe zadanie! Czy służy do tego jakiś specjalny stempel umieszczony na rolce? Nic bardziej mylącego. Zapoznajmy się z ofertą firmy EBS Ink-Jet ...

Mobilna
Elektronika
Praktyczna

Elektronika Praktyczna

Marzec 2017

PrenumerataePrenumerataKup w kiosku wysyłkowym

Elektronika Praktyczna Plus

lipiec - grudzień 2012

Kup w kiosku wysyłkowym