wersja mobilna | kontakt z nami

Połączenia zewnętrzne w instalacjach fotowoltaicznych

Numer: Kwiecień/2016

Złącza fotowoltaiczne to newralgiczny element instalacji. Od ich niezawodnego działania zależy bezawaryjność całej instalacji. Oprócz stopnia ich doskonałości dochodzi tu także czynnik ludzki, gdyż instalator musi we właściwy sposób zamontować je na przewodzie. Dlatego też duże znaczenie ma łatwość montażu złącz.

Pobierz PDF

Instalatorzy poszukują rozwiązań niewymagających zbyt wielu specjalistycznych narzędzi (jak np. zaciskarki), umożliwiających wykonanie zadania podstawowymi przyrządami, w możliwie jak najkrótszym czasie. Często wykonują swą pracę w niewygodnych warunkach (np. na pochyłych dachach), więc jak największym uznaniem cieszą się złącza potrzebujące jak najmniejszej liczby operacji wymaganych do zainstalowania. Oczekiwana jest również możliwość łączenia za pomocą tego samego złącza przewodów o dość szerokim zakresie przekrojów (np. od 2,5 do 6 mm²).

Ważny jest materiał, z którego są wykonane elementy. Złącza takie są przez cały czas narażone na warunki zewnętrzne (deszcze, promieniowanie UV, duże wahania temperatury, zanieczyszczenie środowiska). Dlatego producenci przeprowadzają rygorystyczne testy - w końcu muszą oni zagwarantować prawidłowe działanie złącza przez minimum kilkadziesiąt lat.

W większych instalacjach fotowoltaicznych, podczas łączenia dużej liczby paneli, podstawowe rozwiązania niekoniecznie muszą się sprawdzić w każdym punkcie. Dlatego ważne jest, aby mieć możliwość zastosowania złącz, które mogą pracować przy wyższym napięciu lub z większym obciążeniem prądowym.

Pożądane jest przy tym, aby część stykowa była na tyle uniwersalna, by nie było konieczności stosowania specjalnych adapterów/przejściówek. Dotyczy to także akcesoriów (jak na przykład bezpieczniki wpinane wprost do instalacji).

Fotografia 1. Złącza do instalacji fotowoltaicznych pracują na zewnątrz, narażone na czynniki środowiskowe. W takich aplikacjach kluczowa jest szczelność

Fotografia 2. Szybki montaż bez specjalistycznych narzędzi upraszcza tworzenie instalacji gwarantując przy tym mało błędów montażowych

Na rynku jest kilku wiodących producentów złącz do fotowoltaiki. Niektórzy z nich, starając się dopasować do przyjętych standardów, oferują podobne rozwiązania praktycznie kompatybilne ze sobą. Niestety, tylko praktycznie, ponieważ żaden z nich nie zaleca łączenia swoich złącz z tymi, które pochodzą od innego producenta, a wręcz jasno informuje, że nie bierze odpowiedzialności gwarancyjnej w przypadku stwierdzenia takiego faktu.

I słusznie, gdyż z pozoru tak samo wykonane elementy, mimo iż na pierwszy rzut oka pozwalają się ze sobą spiąć, często różnią się ważnymi detalami. Różnice można znaleźć na przykład w konstrukcji styków prądowych. Aby złącze przewodziło właściwie prąd (zgodnie z założeniami projektanta), obie współpracujące części (męska i żeńska) muszą być wykonane we właściwy sposób, uwzględniający także margines bezpieczeństwa na "starzenie się" materiału.

Producenci przeznaczają na badania ogromne sumy pieniędzy tak, aby zagwarantować bezawaryjne działanie raz połączonego systemu przez kilkadziesiąt lat. Istotne stają się tu wąskie tolerancje wymiarowe, właściwy materiał, odpowiedni kształt styków czy siły dociskowe między częścią żeńską a męską złącza.

Jako przykład negatywnego wpływu sparowania złącz dwóch producentów - różne pokrycie galwaniczne części stykowych może prowadzić do powstania ogniwa elektrycznego na ich połączeniu, co w niekorzystnym przypadku powoduje korozję.

Istotna jest również budowa izolatora, który realizuje skuteczne ryglowanie obu części - czasem drobna różnica wywołać może rozszczelnienie takiej niedopasowanej pary narażając połącznie na warunki zewnętrzne, a w skrajnych przypadkach nawet do jej rozłączenia przy niewielkim naprężeniu przewodów.

Fotografia 3. Producenci systemów złącz testują swoje rozwiązania, aby zapewnić bezawaryjną pracę w długim czasie funkcjonowania aplikacji

Fotografia 4. Wyprowadzenie bezpieczników DC poza skrzynkę rozdzielczą pozwala nie tylko na zmniejszenie jej wymiarów, ale przede wszystkim na wyeliminowanie źródła ciepła z otoczenia pozostałych komponentów. Zachowanie tego samego systemu przyłączy ułatwia pracę instalatorom

Szczelne połączenia pozwalają także wyprowadzić część elementów montowanych zazwyczaj w szafkach instalacyjnych na zewnątrz. Popularne staje się to np. w przypadku bezpieczników topikowych. Ich charakter pracy zazwyczaj powoduje wytwarzanie się dodatkowego ciepła w ich otoczeniu.

Może to mieć niepożądany wpływ na pozostałe urządzenia pracujące obok nich. Dlatego warto rozważyć adaptery bezpiecznikowe montowane bezpośrednio w torze przewodów doprowadzających prąd z paneli do szafki rozdzielczej. Rozpraszanie ciepła zachodzi w tym przypadku na wolnym powietrzu, gdzie są dostatecznie wentylowane przez naturalny ruch powietrza.

Nie byłoby to możliwe, gdyby nie wytrzymałe, szczelne przyłącza zamontowane na końcach takich elementów. Ich wykonanie zgodnie z obowiązującymi normami gwarantuje także bezpieczeństwo eksploatacji - podczas ewentualnej zmiany przepalonego bezpiecznika instalator nie jest narażony na bezpośredni kontakt z elementami będącymi pod wysokim napięciem generowanym przez oświetlone panele słoneczne.

Warto więc dobrze zastanowić się nad wyborem odpowiedniego systemu połączeń przy tworzeniu instalacji fotowoltaicznych. Dzięki temu można zaoszczędzić czas montażu, mieć pewność bezpieczeństwa kompletnej aplikacji a także ułatwić sobie ewentualne jej serwisowanie w przyszłości. Ma to szczególne znaczenie w przypadku zakładanych okresów jej ciągłej pracy, czyli około 25 lat.

Piotr Andrzejewski
Product Manager w firmie Phoenix Contact

Pozostałe artykuły

Bezpieczniki SMD do "prawdziwych" zwarć

Numer: Kwiecień/2017

W porównaniu z dotychczas stosowanymi bezpiecznikami SMD, nowe bezpieczniki SMD firmy SIBA wydają się duże, a nawet ogromne. Ale stawiane im wymagania również są ogromne ? w końcu ich zadaniem jest wyłączanie prądów zwarciowych o natężeniu wieluset amperów, a w przypadku uszkodzeń odłączenie uszkodzonych elementów lub urządzeń od sieci. W artykule opisano zasadę działania tych bezpieczników.

ADAU1777Z - procesor audio DSP do urządzeń mobilnych

Numer: Kwiecień/2017

Analog Devices sukcesywnie rozszerza do niej rodzinę Sigma DSP. Tym razem do rodziny dołączył układ do aplikacji mobilnych - ADAU1777. Dla szybkiego sprawdzenia jego parametrów użytkowych jest przeznaczony zestaw ewaluacyjny EVAL-ADAU1777.

Raspberry Pi Zero Wi-Fi - małe i cieszy

Numer: Kwiecień/2017

Powoli wyliczenie modeli Raspberry Pi wymaga chwili zastanowienia, a znowu do rodziny dołączył kolejny członek ? Raspberry Pi Zero z wbudowanym modułem łączności bezprzewodowej Wi-Fi.

Moduł dsPICDEM MCSM

Numer: Kwiecień/2017

Silniki krokowe są szeroko stosowane w aplikacjach kontrolno-pomiarowych. Spotyka się je w drukarkach atramentowych typu ink-jet, obrabiarkach CNC, napędach DVD, pompach objętościowych i wielu innych urządzeniach. Naprzeciw potrzebom konstruktorów wyszła firma Microchip.

LTC4123 - miniaturowa ładowarka bezprzewodowa

Numer: Marzec/2017

Pomimo rozwoju tej techniki, ładowanie bezprzewodowe raczej z dużą trudnością adaptuje się w sprzęcie powszechnego użytku. Zbyt długie prace nad standardem, obecność kilku konkurencyjnych rozwiązań nie ułatwiają wyboru i ?doposażenia? własnych konstrukcji w funkcje ładowania bezprzewodowego. W artykule przedstawiono rozwiązanie proponowane przez Linear Technology służące do bezprzewodowego ładowania akumulatora NiMH o niewielkiej ...

Mobilna
Elektronika
Praktyczna

Elektronika Praktyczna

Kwiecień 2017

PrenumerataePrenumerataKup w kiosku wysyłkowym

Elektronika Praktyczna Plus

lipiec - grudzień 2012

Kup w kiosku wysyłkowym