wersja mobilna | kontakt z nami

Przetwornica podwyższająca napięcie

Numer: Marzec/2016

Miniaturowa przetwornica podwyższająca do 5 V/1,5 A, ułatwiająca zasilanie "prądożernych" układów np. Raspberry PI, BeagleBone z zestawu ogniw 3×LR6 lub akumulatora Li-Po.

Pobierz PDFMateriały dodatkowe

Rysunek 1. Schemat ideowy przetwornicy podwyższającej napięcie

Opisywany projekt przetwornicy podwyższającej umożliwia uzyskanie napięcia +5 V przy obciążeniu do 1500 mA (2000 mA szczytowo) w zależności od wydajności ogniw, przy zasilaniu z trzech typowych, połączonych szeregowo ogniw AA lub akumulatora Li-Po. Schemat ideowy proponowanego rozwiązania zamieszczono na rysunku 1.

Jako sterownik wybrano układ TPS61232. Jego wybór był podyktowany nieskomplikowaną aplikacją, niewielką liczbą elementów zewnętrznych i akceptowalną ceną. Układ do pracy wymaga jedynie dławika i kondensatorów filtrujących. TPS61232 ma napięcie wyjściowe ustalone na +5 V. Jest oferowany jest w obudowie VSON z wkładką radiatorową. Dodatkowo, w strukturze U1 zawarto komparator z histerezą umożliwiający realizację zabezpieczenia podnapięciowego ULVO wraz z sygnalizacją poprawności zasilania PG. Klucz przetwornicy ma ograniczenie do 5 A.

Napięcie z baterii jest doprowadzone do złącza IN. Przełącznik SW umożliwia wyłączenie przetwornicy. Napięcie baterii (3,1...5 V) zostaje podwyższone w przetwornicy U1 do wartości +5 V i doprowadzone do gniazda OUT. Dioda świecąca LD1 sygnalizuje obecność napięcia wyjściowego +5 V. Układ TPS61232 ma wbudowane dodatkowe obwody monitorowania zbyt niskiej wartości napięcia zasilania układu - po spadku napięcia poniżej progu układ zostaje wyłączony.

Rysunek 2. Schemat montażowy przetwornicy podwyższającej napięcie

Umożliwia to wykonanie zabezpieczenia przed nadmiernym rozładowaniem akumulatora. Dzielnik R1...R3 ustala napięcie załączenia przetwornicy na +3,3 V, rezystor R3 określa histerezę - układ wyłączy się przy spadku napięcia poniżej 3,1 V. Taki dobór progów napięciowych umożliwia współpracę z akumulatorem Li-Po lub zestawem 3×LR6 (NiMH).

Przetwornicę zmontowano na niewielkiej, dwustronnej płytce drukowanej - jej schemat montażowy pokazano na rysunku 2. Montaż jest typowy i nie wymaga opisywania. Przy dłuższej pracy z obciążeniem zbliżonym do maksymalnego, dla poprawy odprowadzania ciepła na U1 należy dokleić niewielki radiator BGA.

Pierwsze uruchomienie warto przeprowadzić z regulowanego zasilacza laboratoryjnego z ograniczeniem prądowym (3...5 V/5 A). Wyjście należy obciążyć rezystorem 3,3 V/10 W i skontrolować napięcie wyjściowe. Zmieniając napięcie zasilające w przedziale 3...5 V należy skontrolować poprawność działania układu ULVO.

Jeżeli wszystko działa dobrze, można dołączyć akumulator/baterię oraz ponownie sprawdzić działanie układu. Należy tylko pamiętać o odpowiednim doborze akumulatora, aby nie przekroczyć maksymalnego prądu rozładowania, gdyż przy pracy przy niższym napięciu wejściowym, pobierany prąd może sięgać 4 A.

Kondensatory C2...C3 zapewniają minimum filtrowania napięcia niezbędne do poprawnej pracy. Jeżeli zasilany układ wymaga mniejszych tętnień, do wyjścia można dołączyć kondensator elektrolityczny (tantalowy) Low ESR o pojemności 22...220 mF/10 V.

Adam Tatuś, EP

Pozostałe artykuły

Moduł audio DAC dla Raspberry PI z wyjsciami I²S i S/PDIF

Numer: Maj/2016

W większości aplikacji multimedialnych Raspberry PI dobrze jest mieć dwa rodzaje wyjść sygnału audio: analogowe i cyfrowe. Ułatwia to elastyczne dołączenie do domowego systemu AV. Nie są dostępne takie rozwiązania komercyjne, każdorazowo trzeba składać HAT DAC i S/PDIF, co niepotrzebnie podnosi koszty. Przedstawione rozwiązanie integruje oba układy na jednej płytce i jest zgodne z dostępnym oprogramowaniem.

Termostat 4-kanałowy

Numer: Maj/2016

Gotowy układ ma szerokie zastosowania, np. w sterowaniu wentylatorów schładzających. Dzięki czterem niezależnym kanałom pomiarowym, możliwe jest sterowanie na podstawie pomiaru temperatur w różnych punktach urządzenia.

Przejściówka USB/I²C

Numer: Maj/2016

Miniaturowy moduł konwertera USB na I²C oparty o Arduino Leonardo. Stanowi doskonałe uzupełnienie warsztatu konstruktora oraz umożliwia skorzystanie z bogatej oferty układów z interfejsem I²C.

Generator przebiegu prostokątnego

Numer: Kwiecień/2016

Niewielki, programowany generator przebiegu prostokątnego, niezbędny w laboratorium elektronika. Wykonano go w oparciu o układ CPLD typu XC9572.

Interfejs Ethernet dla Raspbery PI Zero

Numer: Kwiecień/2016

Nowy model Pi da się polubić, ale brak interfejsu Ethernet jest dokuczliwy, ponieważ jest to oczywiste okno na świat dla mikrokomputerów. Naturalnie, że można użyć karty Wi-Fi z USB, ale port USB jest tylko jeden...

Mobilna
Elektronika
Praktyczna

Elektronika Praktyczna

Maj 2017

PrenumerataePrenumerataKup w kiosku wysyłkowym

Elektronika Praktyczna Plus

lipiec - grudzień 2012

Kup w kiosku wysyłkowym