wersja mobilna | kontakt z nami

Miniaturowy licznik czasu pracy

Numer: Grudzień/2015

Wiele urządzeń, jak filtry uzdatniające wodę czy maszyny przemysłowe, musi regularnie przechodzić przeglądy serwisowe. Niniejsze urządzenie pozwala zmierzyć, jak długo one pracują. Niewielkie gabaryty i czytelny wyświetlacz ułatwiają montaż oraz eksploatację. Rekomendacje: licznik przyda się do zamontowania w każdym urządzeniu, które wymaga przeglądów okresowych.

Pobierz PDFMateriały dodatkowe

Rysunek 1.Schemat ideowy licznika czasu pracy

Schemat ideowy licznika czasu pracy pokazano na rysunku 1 Najistotniejszy jest w nim mikrokontroler ATmega48 odpowiedzialny za obsługę wyświetlacza, pamięci i odliczanie czasu. Jest on taktowany przebiegiem o częstotliwości 4 MHz stabilizowanej za pomocą rezonatora kwarcowego. Złącze J2 służy do zaprogramowania pamięci Flash, bitów zabezpieczających oraz zerowania licznika, o czym dalej. Rezystory R3...R6 uzupełniają wbudowanie w mikrokontroler rezystory podciągające.

Sterowanie wyświetlaczem LED odbywa się bez dodatkowych tranzystorów, ponieważ prąd segmentów jest niewielki - rzędu 3 mA. Jednocześnie, prąd płynący przez wyprowadzenie wspólne cyfry nie przekracza 27 mA, co jest akceptowalnym przez mikrokontrolery z rodziny AVR obciążeniem pojedynczego wyprowadzenia. Każda cyfra świeci z wypełnieniem ok. 25% z uwagi na sterowanie multipleksowe, lecz zastosowany w prototypie wyświetlacz jest bardzo czytelny przy takim zasilaniu.

Zasilanie dołącza się do zacisków złącza śrubowego J1. Przed zniszczeniem, wywołanym zamianą polaryzacji przewodów, chroni dioda D1. Kondensatory C1 i C2 znajdują się blisko stabilizatora US1, uniemożliwiając jego wzbudzenie. Dioda D2 oddziela kondensatory C3...C6 od stabilizatora.

Dzielnik złożony z rezystorów R1 i R2 wytwarza, w normalnych warunkach, napięcie zbliżone do 2,5 V. Dokładna wartość tego napięcia nie jest istotna, bowiem wchodzi ono na wejście odwracające komparatora, zawartego w strukturze ATmega48. Na wejście nieodwracające podaje się napięcie 1,1 V, pochodzące z wewnętrznego źródła referencyjnego.

Wynika z tego, że podczas pracy, wyjście komparatora znajduje się w stanie niskim. Teraz wyraźna staje się rola diody D2: po zaniku napięcia zasilającego, napięcie na wyjściu stabilizatora spada poniżej granicy przełączenia komparatora. Zbocze narastające, pojawiające się na jego wyjściu, wyzwala przerwanie rozpoczynające zapis odmierzonych wartości do pamięci EEPROM. Mikrokontroler działa wtedy dzięki energii zgromadzonej w kondensatorach C5 i C6.

Na czas zapisu wyłącza się wyświetlacz, aby nie przyśpieszał on rozładowywania. Po skończonym zapisie, wyświetlacz jest uruchamiany ponownie. Jeżeli był to tylko krótkotrwały zapad napięcia, wówczas układ powróci do normalnej pracy. Jeśli zaś napięcie zanikło całkowicie, kondensatory rozładują się i układ przestanie działać.

Konfigurowanie licznika

Fotografia 2. Sygnalizacja błędu podczas konfigurowania

Tryb pracy wybierany jest za pomocą zworek ZW1...ZW3. Wykonano je jako pary punktów lutowniczych, które należy zewrzeć kroplą cyny. Przeznaczenie każdej ze zworek jest następujące:

  • ZW1 - odmierzanie dni, maksymalnie 9999 dni.
  • ZW2 - odmierzanie dni i godzin, maksymalnie 99 dni i 23 godziny.
  • ZW3 - odmierzanie godzin i minut, maksymalnie 99 godzin i 59 minut.

Stan zworek sprawdzany jest wyłącznie w chwili uruchomienia układu - po to, aby np. zimny lut, który przerwie połączenie, nie zatrzymał odliczania. Nieprawidłowości (zwarta więcej niż jedna zworka lub brak zwarcia) sygnalizowany jest napisem "Err" - fotografia 2. Wówczas należy odłączyć zasilanie, dokonać poprawek i ponownie je włączyć.

Zerowanie zapamiętanego czasu odbywa się poprzez zwarcie dwóch wyprowadzeń złącza J2: MOSI i GND. Na płytce jest to zaznaczone jako "ZERO". Wyzerowanie może się odbyć jedynie w chwili włączenia zasilania, po to, aby późniejsze przypadkowe zwarcie na tym złączu nie skasowało ustawień. Aby dokonać resetu, należy nałożyć na te wyprowadzenia zworkę, wyłączyć zasilanie, po kilku sekundach włączyć je ponownie i zdjąć zworkę. Procedury resetu należy dokonać również w sytuacji zmiany trybu pracy.

Wykaz elementów

Rezystory: (SMD 0805)
R1...R6: 10 kΩ
R7...R14: 1 kΩ

Kondensatory: (SMD 0805)
C1...C3, C9: 100 nF
C4: 1 nF
C5, C6: 220 µF/16 V (elektrolit.)
C7, C8: 15 pF

Półprzewodniki:
D1, D2: BAS85
LED1: AF5643FS lub podobny
US1: 78L05 (SO8)
US2: ATmega48PA (TQFP32)

Inne:
J1: ARK2/5 mm
J2: goldpin 5-pin, kątowy
Q1: 4 MHz (HC49)

Montaż i uruchomienie

Rysunek 3. Schemat montażowy licznika czasu pracy

Układ licznika został zmontowany na dwustronnej płytce drukowanej o wymiarach 100 mm×20 mm, której schemat montażowy pokazano na rysunku 3. Rezonator kwarcowy Q1 należy wlutować na nieco dłuższych nóżkach, po to, aby jego metalowa obudowa nie dotykała powierzchni płytki oraz metalizowanych padów lutowniczych. Kondensatory C5 i C6 warto położyć na płytce, zostało przewidziane na to miejsce.

Przed zaprogramowaniem pamięci Flash mikrokontrolera, należy dokonać zmiany bitów zabezpieczających: trzeba przestawić źródło taktowania na zewnętrzny rezonator kwarcowy 4 MHz oraz wyłączyć podział częstotliwości zegara przez 8.

Prawidłowo zmontowany układ powita użytkownika zerem (bądź dwoma zerami) oraz migającą kropką. Kropka ta sygnalizuje, że układ działa poprawnie i odmierza czas. Oddziela ona wskazania dni od godzin lub godziny od minut. W przypadku zwarcia zworki ZW1, będzie migała po prawej stronie. Przekroczenie zakresu zostanie zasygnalizowane wyświetleniem kresek - fotografia 4. Układ przestaje wówczas liczyć, należy go wyzerować.

Fotografia 4. Sygnalizowanie przekroczenia zakresu

Kondensatory elektrolityczne, podtrzymujące działanie mikrokontrolera, wystarczają na ok. 0,6 s pracy, podczas, gdy zapis do pamięci trwa ok. 50 ms. Jest to duży zapas, zatem niewielka utrata pojemności wywołana starzeniem lub zmianą temperatury nie będzie tutaj dotkliwa.

Dokładność odmierzanego czasu jest zdeterminowana przez kwarc. Typowe rezonatory mają tolerancję ±30ppm i stabilność ±5 ppm/rok, co przekłada się na odchył, odpowiednio, ±15,5 min oraz ±2,5 min w skali roku.

Michał Kurzela, EP

Pozostałe artykuły

Przetwornik audio DAC z układem PCM5102A

Numer: Marzec/2016

Wśród urządzeń budowanych przez elektroników ogromną popularnością cieszą się urządzenia audio. Nic nie cieszy tak, jak samodzielnie wykonany wzmacniacz, odtwarzacz lub przetwornik C/A. Tym bardziej, że można je wykonać z użyciem najlepszych komponentów oraz dopasować do własnych upodobań. Przetwornic C/A opisywany w artykule zbudowano z użyciem doskonałego, kultowego układu scalonego PCM5102A, dzięki czemu charakteryzuje ...

Monitor odnawialnego źródła energii

Numer: Marzec/2016

Odnawialne źródła energii (w skrócie OZE) cieszą się rosnącą popularnością. Mnogość rozwiązań dostępnych na rynku może przyprawić o zawrót głowy, lecz większość z nich jest przeznaczona do dużych instalacji, o mocach rzędu kilowatów. Wybór maleje, jeżeli chodzi o małą instalację na niskie napięcie, przeznaczoną do zasilania np. domku letniskowego. Niniejszy projekt jest propozycją rozwiązania tego problemu. Rekomendacje: ...

Lidia 80 Digital. Przystawka do odbiornika homodynowego na pasmo 80 m. cz. 3

Numer: Marzec/2016

Proste odbiorniki nasłuchowe są wciąż bardzo popularnymi urządzenia wśród radioamatorów-krótkofalowców. Kosztują niewiele, zajmują mało miejsca i pozwalają przy tym z powodzeniem prowadzić dobre nasłuchy w różnych warunkach. Popularny, łatwy do wykonania odbiornik homodynowy "Lidia 80" wg Włodka SP5DDJ został skonstruowany tak, że można go z powodzeniem wykorzystywać w wersji podstawowej, ale daje się też rozbudowywać ...

Impulsowa, mikroprocesorowa ładowarka akumulatorów kwasowo-ołowiowych

Numer: Marzec/2016

Najefektywniejszą metodą ładowania akumulatorów kwasowo-ołowiowych jest ładowanie stałym prądem (algorytm CC) z odcięciem napięcia (algorytm CV). W praktyce oznacza to, że dla akumulatora ołowiowego prąd ładowania może zawierać się w przedziale od kilku do około 30% pojemności znamionowej akumulatora. Prąd o takim natężeniu nie jest szkodliwy dla ładowanego akumulatora pod warunkiem, że nie zostanie przekroczone napięcie ...

DSPfactory. Profesjonalny efekt dźwiękowy dla muzyków. cz. 1

Numer: Marzec/2016

Odtworzenie brzmienia efektów opartych na celowym opóźnieniu sygnału (zwłaszcza typu chorus, reverb i echo) jest dość łatwe w realizacji. A skoro tak, to zrodził się pomysł zbudowania profesjonalnego efektu muzycznego pozwalającego na symulowanie analogowych kamer pogłosowych oraz realizację innego rodzaju efektów muzycznych. W ten sposób powstał DSPfactory - procesor cyfrowy do tworzenia efektów przestrzennych, który postawiony ...

Mobilna
Elektronika
Praktyczna

Elektronika Praktyczna

Marzec 2017

PrenumerataePrenumerataKup w kiosku wysyłkowym

Elektronika Praktyczna Plus

lipiec - grudzień 2012

Kup w kiosku wysyłkowym