wersja mobilna | kontakt z nami

PWR_SolarCAP. Power bank zasilany przez słońce

Numer: Listopad/2015

Pozyskiwanie energii z otoczenia, czyli "energy harvesting" oraz lawinowo rosnąca liczba urządzeń przenośnych, wymusiły zupełnie nowe podejście do układów zasilania. Typowa bateria odchodzi powoli w zapomnienie, a na topie są układy wykorzystujące niekonwencjonalne źródła zasilania. Opisany w EP2/15 układ harvestera ADP5090 charakteryzował się niewielką mocą wyjściową, niewystarczającą do zasilania bardziej "prądożernych" odbiorników - prezentowany SolarCAP rozwiązuje ten problem. Rekomendacje: projekt - oprócz funkcji czysto praktycznej - umożliwia zapoznanie się z superkondensatorami wykonanymi w technologii EDLC, który liczba zastosowań rośnie w bardzo szybkim tempie.

Pobierz PDFMateriały dodatkowe

Opisywany "bank mocy" pozyskuje energię z ogniwa słonecznego o napięciu znamionowym 5 V i mocy 0.6...5 W. Jest przy tym stosowany algorytm śledzenia punktu mocy maksymalnej (MPPT). Składa się z dwóch bloków funkcjonalnych - ładowarki oraz magazynu energii.

Energia jest gromadzona w baterii czterech kondensatorów o pojemności 22 F każdy. Dzięki ich zastosowaniu jest możliwa (porównaniu do z akumulatorem LiPo) praktycznie nieograniczona praca cykliczna (ładowanie/rozładowanie) urządzenia bez wpływu na trwałość elementu magazynującego, a dzięki sporej pojemności jest możliwy też chwilowy pobór prądu na poziomie kilkuset mA.

Rysunek 1. Schemat ideowy ładowarki

Rysunek 2. Struktura wewnętrzna ZSPM4523 (za notą ZMDI)

Schemat ideowy ładowarki baterii kondensatorów pokazano na rysunku 1. Wykonano ją w oparciu o specjalizowany kontroler ładowania ZSPM4523 firmy ZMDI, którego schemat blokowy przedstawiono na rysunku 2.

Układ zawiera wszystkie elementy niezbędne zarówno dla pozyskiwania energii z ogniwa słonecznego, jak i ładowania kondensatora.

Układ ładowania zapewnia możliwość konfiguracji napięcia, prądu ładowania a, dzięki wykorzystaniu przetwornicy impulsowej zamiast typowego zasilacza liniowego (jak np. w LTC4425) charakteryzuje się wysoką sprawnością.

Układ ZSPM4523 oczywiście ma wbudowane zabezpieczenia zapewniające prawidłowy proces ładowania: zabezpieczenie przed zwarciem z ograniczeniem prądowym, układ zabezpieczenia przed przegrzaniem i zbyt wysokim napięciem wejściowym.

Rysunek 3. Sposób zapisu rejestrów

Rysunek 4. Mapa rejestrów ZSPM4532

Dostępne jest wyjście sprzętowe NFLT służące do sygnalizacji awarii. Układ jest wyposażony w interfejs I²C umożliwiający konfigurowanie i monitorowanie parametrów procesu ładowania. Są one przechowywane w pamięci EEPROM i po jednorazowej konfiguracji możliwa jest praca samodzielna bez nadzorującego procesora.

Aplikacja ZSPM4523 nie odbiega od zaprezentowanej w nocie. Napięcie z ogniwa słonecznego 5 V jest doprowadzone (po odfiltrowaniu przez C1) do wejścia IN układu U1. Po przekroczeniu progu 3.15 V zostaje aktywowana wewnętrzna przetwornica ładowania, która odpowiada za kontrolę prądu, końcowego napięcia kondensatora oraz śledzenie MPPT.

Rezystory R3 i R4 są bocznikiem pomiarowym prądu ładowania oraz ograniczenia prądowego. Napięcia z baterii kondensatorów, poprzez bezpiecznik polimerowy RF1, jest doprowadzone do wyjścia OUT i może zostać wykorzystane do zasilania odbiorników bezpośrednio lub za pomocą dołączonej przetwornicy (np. TPS63061, MCP1640), która pozwoli na zasilanie odbiorników napięciem 3,3 V, 5 V lub innym.

Wyjście wewnętrznego stabilizatora LDO jest filtrowane za pomocą kondensatora C3. Do wyjścia przetwornicy są dołączone kondensatory C4 i C5. Oprócz wyprowadzenia magistrali komunikacyjnej złącze I²C zawiera także sygnał awarii NFLT (typu OD) oraz wewnętrzne zasilanie 3,3 V/10 mA, umożliwiające np. zasilanie kontrolera sterującego. Rezystory R1 oraz R2 zasilają magistralę I²C i powinny być dołączone do napięcia zasilania układu sterującego (I²C-PIN3).

Rysunek 5. Rejestr CONFIG1 (02h) - napięcie końcowe ładowania

Rysunek 6. Rejestr CONFIG3 (04h) - maksymalny prąd ładowania

Do poprawnej pracy układu U1 jest konieczna jednorazowa konfiguracja parametrów ładowania. Układ jest dostępny na magistrali I²C pod adresem 48h. Sposób zapisu rejestrów pokazano na rysunku 3. Wykaz rejestrów przedstawia rysunek 4.

Rysunek 7. Rejestr STATUS (00h)

Konfiguracji wymaga napięcie końcowe ładowania w rejestrze CONFIG1 pod subadresem 02h zgodnie z rysunkiem 5. W modelu napięcie jest ustalone na 2,66 V, co odpowiada zapisowu 02h 18h. Kolejnym parametrem jest maksymalny prąd ładowania w rejestrze CONFIG3 pod subadresem 04h, zgodnie z rysunkiem 6.

W modelu prąd ustalono na 400 mA, co odpowiada zapisowu 04h 40h zgodnie z rysunkiem 6 i odpowiada współpracy z ogniwem 5 V/2 W. Status układu jest udostępniony w rejestrze STATUS (00h) pokazanym na rysunku 7.

Odczyt rejestru automatycznie kasuje flagi i stan wyjścia NFLT. Stany ostrzeżeń TSD/VIN_UV nie są sygnalizowane na wyjściu NFLT.

Rysunek 8. Schemat montażowy ładowark i

Listing 1. Symboliczny sposób konfi guracji układu przetwornicy

Dostęp zapis/odczyt do rejestrów STATUS/CONFIG1/3 jest możliwy dopiero po ustawieniu bitu D0=1, czyli flagi EN_CFG w rejestrze CONFIG_ENABLE (11h). Domyślnie po resecie EN_CFG=0 i dostęp do rejestrów jest zablokowany.

Przepisanie zawartości CONFIG1/3 do wewnętrznej pamięci EEPROM możliwy jest po ustawieniu bitu D0=1, czyli flagi EE_PROG w rejestrze EEPROM_CTRL (12h). Domyślnie zapis jes zablokowany: EE_PROG=0. Zapis możliwy jest tylko gdy ustawiona jest flaga EN_CFG. Symboliczny sposób konfiguracji (Arduino/ Energia) zamieszczono na listingu 1.

Wykaz elementów

Rezystory: (SMD 1206)
R1, R2: 10 kΩ/1%
R3, R4: 0,1 Ω/1%

Kondensatory:
C1, C5: 10 µF (X5R)
C2...C4: 0,1 µF (X5R)
CS1...CS4: 22 F/2,7 V (DRL)

Półprzewodniki:
U1: ZSPM4523 (QFN16)

Inne:
RF: RXE185 (bezpiecznik polimerowy 1,85 A)
I²C: złącze kątowe EH6
L1: 4,7 µH (SDR1307, dławik SMD)
OUT, SOLAR: złącze ARK/5 mm

Schemat montażowy urządzenia pokazano na rysunku 8. Jego montaż jest typowy i nie wymaga opisu - istotne jest jedynie prawidłowe przylutowania pada termicznego U1. W Dla prądu ładowania przekraczającego 800 mA do układu U1 należy dokleić niewielki radiator BGA z blaszki miedzianej. W zależności od potrzeb jest możliwe zwiększenie pojemności banku CSx do 4×50 F.

Urządzenie nie wymaga uruchamiania, należy tylko skonfigurować parametry ładowania za pomocą zewnętrznego procesora np. Arduino, Launchpad, STM32 itp. Firma ZMDI udostępnia także oprogramowanie konfiguracyjne, które wraz z przejściówką USB/I²C ułatwia konfigurowanie układów. Warto po zaprogramowaniu sprawdzić prąd ładowania i napięcie końcowe na kondensatorach.

Na koniec życzę wielu słonecznych dni i kondensatorów pełnych ładunku!

Adam Tatuś, EP

Pozostałe artykuły

Moduły komunikacyjne IoT

Numer: Kwiecień/2016

W artykule przedstawiono projekt dwóch modułów do komunikacji radiowej umożliwiających transmisję danych w aplikacjach IoT i nie tylko. Pierwszy to popularny moduł ESP8266 umożliwiający łączność przez sieć Wi-Fi. Drugim jest Bluetooth BLE4 z komunikacją radiową w standardzie "niskomocowego" interfejsu Bluetooth, oparty o moduł RN4020. Rekomendacje: moduły są zgodne mechanicznie ze standardem XBee, co ułatwia ich zastosowanie ...

Termometr 2-kanałowy z interfejsem Bluetooth

Numer: Kwiecień/2016

Opisywany projekt jest dwukanałowym, precyzyjnym termometrem przesyłającym wynik pomiaru za pomocą Bluetooth. Dzięki temu może być umieszczony w dowolnym urządzeniu lub w pomieszczeniu, a temperatura może być odczytywana za pomocą komputera, smartfonu lub tabletu. Rekomendacje: termometr przyda się w systemie automatyki domowej.

Sterownik taśmy LED ze zdalnym sterowaniem

Numer: Kwiecień/2016

Oświetlenie diodowe zdobywa coraz większą popularność. Długi czas eksploatacji, niski pobór energii oraz malejące ceny to czynniki, które skłaniają coraz większą liczbę osób do jego stosowania. W artykule zostanie zaprezentowany regulator jasności dedykowany do taśmy LED, z pilotem bezprzewodowym i nietypowym sterowaniem. Rekomendacje: sterownik przyda się do oświetlenia obiektów i wnętrz.

MegaDSP+. Zestaw do nauki DSP

Numer: Kwiecień/2016

Opisany w Elektronice Praktycznej nr 12/2014 projekt SigmaDSP+ pozwalał na zapoznanie się z obsługą i podstawowymi funkcjami procesorów sygnałowych z rodziny Sigma DSP firmy Analog Devices. Nic nie stało też na przeszkodzie, aby zastosować tamten moduł we własnej aplikacji. Celem, który przyświecał opracowaniu MegaDSP+ było zachowanie cech poprzednika, ale przy znacząco zwiększonych możliwościach. Rekomendacje: zestaw przyda ...

DSPfactory. Profesjonalny efekt dźwiękowy dla muzyków. cz. 2

Numer: Kwiecień/2016

Odtworzenie brzmienia efektów opartych na celowym opóźnieniu sygnału (zwłaszcza typu: chorus, reverb i echo) jest dość łatwe w realizacji. A skoro tak, to zrodził się pomysł zbudowania profesjonalnego efektu muzycznego pozwalającego na symulowanie analogowych kamer pogłosowych oraz realizację innego rodzaju efektów muzycznych. W ten sposób powstał DSPfactory - cyfrowy procesor muzycznych efektów przestrzennych, który postawiony ...

Mobilna
Elektronika
Praktyczna

Elektronika Praktyczna

Kwiecień 2017

PrenumerataePrenumerataKup w kiosku wysyłkowym

Elektronika Praktyczna Plus

lipiec - grudzień 2012

Kup w kiosku wysyłkowym